
Welcome to the new
frontier of DevOps:
Improve application development and
deployment using Microsoft SQL Server 2017

Table of contents

 FPO Vector Graphic

TOC

The draw of the DevOps frontier				

The cowboy method makes for a wild rodeo ride		

Tracking cattle cowboy style					

Finding the holy grail of database operations			

Bringing civility to your DevOps approach			

Exploring the ORM method in greater detail			

Tracking cattle at Ranch ORM					

Exploring the imperative method in greater detail		

Tracking cattle at Ranch Imperative				

Exploring the declarative method in greater detail		

Tracking cattle at Ranch Declarative				

Comparing DevOps deployment methods			

Cattle-tracking code comparison				

Forging your way through the new DevOps frontier		

3

4

5

6

7

8

9

10

11

12

13

14

15

16

The draw of the DevOps frontier
It’s no wonder so many teams are switching to the DevOps approach for
application development and deployment.

		 Teams that successfully employ the DevOps approach use a systematic
method for development and deployment. They understand that fast doesn’t
mean hasty, efficient doesn’t mean inflexible, and bringing two functions
closer together doesn’t mean eliminating one. In order to create their
continuous integration environment, they don’t just improvise database
development, they plan for it.

We want to help you successfully embrace a DevOps approach in which you
can realize the benefits of a CI/CD environment without compromising the
integrity of your application or your database.

Throughout this document, we’ll look at a new deployment process that
supports the DevOps approach and explain three methods you can use to
facilitate it.

Bring app development to database operations
to build quality apps efficiently

Speed updates and version releases with a
CI/CD pipeline

Connect apps to the latest tech, services
and tools

The roundup

3

The cowboy method makes for a wild rodeo ride
Many developers understand the benefits of checking their app into source
control, applying continuous integration, and performing automatic testing
before deployment. However, not all developers realize these steps are just as
important when it comes to connecting the app to its supporting database.

When developers use requisite SQL code changes instead of a structured,
methodical process, we refer to it as the cowboy method.

Shooting from the hip and making up rules along the way, the cowboy
method is wild, unruly and downright discourteous to your future self. Sure,
it works in the short term, if your only goal is to deploy new applications
fast. But in the long term, or as your app evolves, the cowboy method causes
certain calamity.

Cowboys may attempt to track changes and save versions by
writing comments directly in the code.

When it comes to testing, cowboys may test in production or
perhaps not at all.

And, cowboys almost always deploy using a manual process.

They may use source control for certain scripts in case they need
them later, but they don’t do it frequently or systematically.

4

Tracking cattle cowboy style
Stake claim to the app
Imagine you take a job at a dude ranch and inherit a cattle-tracking app
that helps ranchers locate cows.

TThe app’s been on the fritz, showing cows where they aren’t. The staff
started to notice inconsistencies around the time of the last app update
which was supposed to include new territory but didn’t. Before then, the
app worked just fine. You decide to roll back to the previous version from
before the buggy updates, add the new territory, and include business
intelligence that predicts cow movement under different weather events.

Corral the problem
When you open the app’s database, you quickly realize the original author
used the cowboy method of deployment, meaning there’s no source
control or version record. Instead you have to dig around in the code to
decipher the pieces you need.

A quick scan of the database code reveals:

•	Stored procedures with a lot of green comments. These are supposed
to explain the who, what, when and why of the app changes, but the
comments are so out of date and out of order that they are no help.

•	Confusing names for the stored procedures, tables, and other objects.
These don’t make sense and confuse the story of the app even further.

•	No record of testing, no tracking of active code, and no record of
detected bugs. Testing must have been performed at the user level by the
developer or in production, if at all.

•	Signs of manual deployment, meaning you’ll have to manually deploy any
changes you make.

Drive home the cows
The update that should have taken a day or two is about to cost you weeks.
You contemplate trading your computer and keyboard for a cowboy hat
and a horse to track these cows instead.

Before you roll up your sleeves and dive in, you plan to meet up with three
developer buddies who work at competing dude ranches.

5

Finding the holy grail of database operations
The best practice for DevOps deployment involves parallel paths of source
control, continuous integration, automatic testing and deployment for your
app as well as its supporting database.

Applying this same four-step process to your database not only makes
versions and updates easier to manage, but it also makes your overall
deployments repeatable and less prone to errors.

Furthermore, once you have established this process, you have the ability to
more easily instate a CI/CD environment that deploys updates automatically.

SQL Server 2017: Designed with DevOps in mind 	

SQL Server 2017 can help you along the DevOps
deployment pathway. The latest release now runs in
Docker or Linux containers, allowing you to attach and
ship a database as a component of your app. Containers
make deployment faster, easier and more consistent.
Whereas it used to take hours to stand up and connect a
database to your app, with a container it takes about 20
seconds – just pull, run and compose!

Database definition

Developer writes DDL and/or DML

Source control

Developer checks into source control

Continuous
integration

Automated
testing

Source control triggers:
•	 Changes deployed to Cl environment
•	 Tests to verify DB changes

Source control

Engineer deploys changes
to production

The DevOps deployment process

6

Bringing civility to your DevOps approach
There are three methods you can use in lieu of the rough-and-tumble
cowboy method, all with systematic processes for database deployment.
They rely on establishing and preserving a single source of truth (SSoT)
which can then be referenced from one primary location and propagated
throughout the system. Using a SSoT helps reduce errors, version
inconsistencies and overall frustration.

			 Object Relational Mapping (ORM) method

			 Imperative or Migrations method
	

			 Declarative or State-based method
	

To consistently deploy high-quality apps quickly, you’ll want to choose the
method that complements your existing database environment as well as the
complexity and requirements of your app.

The ORM method stores the SSoT in source control. It uses
drivers to generate a physical database based on a selected,
pre-defined model.

The imperative method relies on the live database to act as
the SSoT. It requires you to write a series of detailed steps that
specify how your database is created, altered and deployed.

The declarative method stores SSoT in source control and lets
you design your own database model. It then uses a database
operations product to compare the model against the current
version and implement upgrades.

IMPERATIVE

7

		 Exploring the ORM method in greater detail
Using the Object Relational Mapping (ORM) method, you write any
application code to describe tables and relationships in your application.
The pre-configured driver that you select from Entity Framework
translates the object model from your app to the relational database
using PowerShell Command Enable-Migrations.

With ORM you don’t need to write (or even know) T-SQL, and there’s no
need to muck around in the database. This also means that you cannot
change the database schema – it must be used exactly the way it is built.

ORM works especially well when the application draws from a single
database.

Supporting tools: Entity Framework is a free, open source collection of
drivers created by Microsoft that connect to SQL Server to build pre-
configured database models. It uses PowerShell to translate application
code into T-SQL queries.

Write your app to match a
predefined model.

Use a driver to translate code
into T-SQL.

No need to touch the data base.

The roundup

8

Tracking Cattle at Ranch ORM
Background			
That night, your buddy from Ranch ORM mentions he also has a cattle-
tracking app in need of territory updates and BI. The only real difference
between your apps is that the original developer at Ranch ORM connected
the app to its database using the ORM method.

Approach
Using the ORM method, he can update the app by:

1.	 Finding a new driver in Entity Frameworks that can build a database 		
	 model to complement the app’s expanded functionality.

2.	 Making the required changes to the app’s source code.

3.	 Deploying the app, which automatically triggers the driver to translate 	
	 the app source code and deploy the database.

Outcome
Once he finds the driver for the database model he needs (provided it exists),
he won’t have to write a single line of T-SQL or perform any testing. You toast
to his good fortune.

He points out that using the ORM method means he can’t modify the
database or roll back to a previous version. Instead, he must use new drivers
each time. He’s also worried if they need multiple databases feeding into the
app, it could require some serious tomfoolery.

But you’re not feeling much sympathy. This guy’s smart and he’ll find a way.

9

		 Exploring the imperative method in greater detail
Under the imperative method, changes are recorded by handwriting scripts
(.SQL) directly in the data environment. The database itself acts as the SSoT by
recording all these updates.

Each script is housed in a shared folder that’s eventually compiled into a single
script and checked into source control for repeatable deployments. This can
be a time-consuming and technical process, but it provides the greatest level
of control. It works best for skilled, disciplined, and experienced developers
who are comfortable with T-SQL and can accurately anticipate what they are
building.

The method allows devs to connect the app to multiple databases as needed –
behind a firewall, buried on-premises, or from a public database source.

Database operations products, such as ReadyRoll (available through Redgate
and shipped with Visual Studio Enterprise), streamline the process with
modification, upgrade, and creation scripts integrated into your source control.

Supporting tools
•	ReadyRoll is a third-party product that integrates seamlessly with Visual

Studio to create and modify scripts as well as check them into source
control.

•	MS SQL-CLI tool helps with querying the database when there is a firewall or
the user wants to automate development and deployment processes.

•	SQL Server Script, which is a series of Transact-SQL statements stored in a
file, can be used as input to SQL Server Management Studio Code editor or
the sqlcmd and osql utilities.

•	SQL Server Management Studio is the primary database administration
tool used for SQL Server. It has several integrations with RedGate products,
including ReadyRoll.

•	Command line utilities (ie: sqlcmd, mssql-scripter, etc) can be used when
there’s no UI or direct access to the database).

Change and check app code into source control.

Follow a disciplined process for updating scripts directly
in the live database.

Implement C/I and testing in the live database. The roundup

IMPERATIVE

10

Tracking cattle at Ranch Imperative
Background															
Your second buddy, who landed at Ranch Imperative, explains the cattle-
tracking app she’s working on now. She has to roll back to a previous version,
update the territory parameters and add new BI functionality. In her case,
though, she’s wrangling multiple databases – a couple behind the firewall
and a couple public sources. She thinks that’s probably why her predecessor
used the Imperative method to connect them to the app in the first place.

Approach		 										
Under the Imperative method, she can update the app by:

1.	 Writing the expanded functionality into the app source code and 			
	 checking it into source control.

2.	 Handwriting scripts directly in the database to reflect the changes made 	
	 to the app.

3.	 Storing and compiling update scripts as the latest database source 			
	 control.

4.	 Deploying the live database.

Outcome 																		
She’s got a complete version history living in the database that she can
fall back on at any time, and she can change the database however
she wants by writing T-SQL scripts. She points out they’re using
Readyroll to create and compile all the scripts, which she says makes it
surprisingly fast, and they’re working on writing the scripts to enable
CI/CD. You toast to her good fortune.

The developer from Ranch ORM tells everyone how glad he is to not be
working at Ranch Imperative. He points out that since the SSoT is the
live database itself, the database has to go live before it can be tested
which means your friend at Ranch Imperative has to alter and deploy
the same database over and over in order to maintain the source
control system.

But you wave away his concerns. Your friend’s whip-smart – it suits her
just fine to have to be a little more diligent.

IMPERATIVE

11

		 Exploring the declarative method in greater detail
The declarative method uses a database operations product, such as Visual
Studio Team Foundation Server (TFS) and SQL Server Data Tools (SSDT), to
compare new create scripts against the current database model. SSDT generates
upgraded scripts based on that comparison (it also works in reverse by pushing
committed changes back to developer).

Under the declarative method, the source control contains the SSoT which means
you never alter the database, only create it new. Each time there is a version
update of the app, the database operations product tears down the current
database and builds it new to preserve version history and data integrity.

The declarative method is easy to implement and allows you to determine the
process and complexity for database development and deployment. Best of all, it
enables integration with other service components further down the pipeline.

Visual Studio including:
•	SQL Server Data Tools (SSDT) for creating and comparing scripts.

•	Team Foundation Server for sharing and tracking processes between team
members.

•	MS build for publishing changes and running automated unit tests on a
scheduled basis.

•	NuGet for helping to automate deployment.

•	VS Test, an open and extensible test platform, for running tests, collecting
diagnostics data and reporting results.

•	tSQLt for unit testing for databases.

SQL Server 2017 for container deployment.

Supporting tools

Database ops automatically push changes to the
database.

Check the app and database into source control
at the same time.

Implement C/I and automatic testing in a
controlled environment.

The roundup

12

Tracking cattle at Ranch Declarative
Background				 														
The last person in your group of buddies works at Ranch Declarative, where
they too have a cattle-tracking app which needs the same updates.

Approach										 									
Under the declarative method, the groups on her team can update 			
the app by:

1.	 Accessing the last (or any previous) version of the app and 				
	 database stored in source control.

2.	 Writing new functionality and updates into source code and 			 		
	 checking each portion into source control – this can be done 					
	 simultaneously by different groups using TFS.

3.	 Relying on SSDT in VS to update the database model(s) by writing new 		
	 scripts based on the new app source code.

4.	 Using MSBuild (integrated in VS) to tear down and build the 				
database(s) according to the updated model(s).

5.	 Performing scheduled, automated tests before 	going live.

6.	 Automating deployment with NuGet.

Outcome									 										
In addition to accessing the complete version history available in source
control, she can change the database however she wants merely by
changing the app and letting VS to do the heavy lifting. You toast to her
good fortune.

She’s excited about all the time-saving capabilities available like:

•	CI/CD as a natural extension of the declarative method that automates
ongoing updates

•	Container deployment with SQL Server 2017 in Dockers that saves
hours of hassle

•	Code Analysis that scans for classic mistakes before even reach testing.

Furthermore, she’s planning to leverage VS’s integration with
components further down the pipeline and make some feature
enhancements to the app.

The Ranch Imperative dev points out that the declarative method could
limit the database schema, but since the model they have works it isn’t a
problem for now.

 D E C L A R I T I V E

 R A N C H

13

Method Highlights Source control Continuous
network

Automated
testing

Production
development

ORM •	Low learning curve.

•	Limited by the availability of
drivers for pre configured
database models.

Not applicable

(the driver predicates the
database schema)

Not applicable

(the driver predicates the
database schema)

Not applicable

(the driver predicates the
database schema)

Happens automatically with
app deployment.

Imperative •	Steepest learning curve.

•	Highly controllable schema
built from handwritten
scripts.

App and database have
different systems. The
live version of database
functions as its source
control.

Manual or available
through the Readyroll
workflow.

Can perform manual
testing. Automatic testing
is available through the
Readyroll workflow, however
there is limited ability to
test without putting it in
production first.

Can use various
deployment tools and
container of choice.

Declarative •	Low learning curve that
complements many
developers’ skillsets.

•	Offers flexibility for model
customization.

•	Uses source control as the
single source of truth.

Both app source code
and database source code
are checked in to source
control at the same time.

Happens automatically
with changes made to the
model. Database is torn
down and built new with
each version in source
control.

Application runs on a
model that can be put into
pre-production for a better
understanding of how the
app will interact with the
data layer.

Push code to production
with a click.

Comparing DevOps deployment methods

14

Cattle-tracking code comparison
Here’s a closer look at how developers from each of the competing ranches
might go about increasing the territory constraints of their respective apps.

ORM Imperative Declarative
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Data.Entity;

namespace ORM_Database_Sample
{
 class Program
 {
 static void Main(string[] args)
 {
 using (var db = new TerritoryDirectory())
 {
 // Create and save a new territory
 Console.Write(“Enter a name for a new
territory: “);
 var temp_name = Console.ReadLine();

 var temp_territory = new Territory { Name
= temp_name };
 db.Territories.Add(temp_territory);
 db.SaveChanges();

 // Display all territories from the database
 var query = from b in db.Territories
 orderby b.Name
 select b;
 Console.WriteLine(“All territories in the database:”);
 foreach (var item in query)
 {
 Console.WriteLine(item.territoryName);
 }

 Console.WriteLine(“Press any key to exit...”);
 Console.ReadKey();
 }
 }
 }

 public class Territory
 {
 public int territoryID { get; set; }
 public string territoryName { get; set; }
 }

 public class TerritoryDirectory
 {
 public DbSet<Territory> Territories { get; set; }
 }
}

/* Example Table*/
GO

PRINT N’Creating [dbo].[territory]...’;

GO
CREATE TABLE [dbo].[territory] (
 [territoryID] INT NOT NULL,
 [territoryName] NVARCHAR(50) NOT NULL,
 [DATECreated] DATETIME2(7) NOT NULL,
 CONSTRAINT [PK_TERRITORY PRIMARY KEY
CLUSTERED ([ID])]
);

/* Imperative
 *
 * Change name of table and increase number of
characters accepted due to longer names
 *
 */

EXEC sp_rename ‘[dbo].[territory]’, ‘[dbo.ranchTerritories]’

ALTER TABLE dbo.ranchTerritories
ALTER COLUMN territoryName NVARCHAR(100) NOT
NULL;

/* Example Table*/
GO

PRINT N’Creating [dbo].[territory]...’;

GO
CREATE TABLE [dbo].[territory] (
 [territoryID] INT NOT NULL,
 [territoryName] NVARCHAR(50) NOT NULL,
 [DATECreated] DATETIME2(7) NOT NULL,
 CONSTRAINT [PK_TERRITORY PRIMARY KEY CLUSTERED
([ID])]
);

/* Declarative
 *
 * Add territoryZip name
 *
 */

CREATE TABLE [dbo].[territory] (
 [territoryID] INT NOT NULL,
 [territoryName] NVARCHAR(50) NOT NULL,
 [DATECreated] DATETIME2(7) NOT NULL,
 [territoryZip] NVARCHAR(50) NOT NULL,
 CONSTRAINT [PK_TERRITORY PRIMARY KEY CLUSTERED
([ID])]
);

/* msbuild to project */
msbuild addColumn.csproj /t:territory

15

H A P P Y

T R A I L S

Forging your way through the new DevOps frontier
The new DevOps approach for app and database deployment offers vast
improvements in efficiency and agility to those who master it. By using
database operations to help you connect your database to your app, you can
avoid the unruly and tedious update process that haunts many cowboys today.

There are three methods of database operations – ORM, Imperative and
Declarative – that all support the systematic process of DevOps database
deployment and set you up for success. Microsoft works closely with
developers and partners to ensure you have products, tools and drivers you
need to smooth your way – whichever path you choose to take.

Put the giddy in your giddy-up with tools from Microsoft

IMPERATIVE

Entity Framework, a collection of drivers, is free from Microsoft.
Arrow-alt-circle-right Explore Entity Framework

ReadyRoll by Redgate integrates seamlessly in Visual Studio
Arrow-alt-circle-right Explore Readyroll

SQL Server Data Tools (SSDT) is built-in at no additional cost
with Visual Studio.
Arrow-alt-circle-right Explore SSDT

16

https://docs.microsoft.com/en-us/ef/#pivot=entityfmwk
https://marketplace.visualstudio.com/items?itemName=redgatesoftware.redgate-readyroll
https://docs.microsoft.com/en-us/sql/ssdt/download-sql-server-data-tools-ssdt

