
A cloud developer’s guide to
resource scaling, performance
features, and automatic tuning

Intelligent Performance
Optimization with Microsoft
Azure SQL Database

© 2018 Microsoft Corporation. All rights reserved.

This document is provided “as is.” Information and views
expressed in this document, including URL and other
internet website references, may change without notice.
You bear the risk of using it.

This document does not provide you with any legal rights
to any intellectual property in any Microsoft product.
You may copy and use this document for your internal,
reference purposes.

Performance is critical no matter what your
data does. Just as a dropped call frustrates
cellular customers, an app with data issues—
out-of-date records, latency, disconnects,
or worse—will drive your users to your
competitors. This e-book provides the
technical details necessary to help ensure that
your data won’t let you down when you need it
the most.

Who should read this?

We wrote this e-book for developers
concerned with how their database
performance supports their apps. We cover
the many ways that Microsoft Azure SQL
Database helps you deliver great performance,
at minimal overhead. We capture the deep
technical details, like the relevant SQL code
snippets, and share the process for putting
each feature or capability to use. If you want
cloud database performance that stands up to
every development scenario, read on.

1	 Introduction

3	 Dynamic resource scaling

3	 Service tiers, performance levels, and DTUs

5	 Elastic database pools

7	 Database performance features

7	 In-Memory OLTP

11	 Columnstore indexes

14	 Intelligent performance monitoring and tuning

14	 Intelligent Insights

15	 Automatic tuning

17	 Adaptive query processing

19	 Conclusion

Contents

1

No matter what your app does, making
sure it delivers adequate performance is
essential.

If it doesn’t, one thing’s for sure: you’ll be
hearing about it from someone, and you’ll
need to scramble to react. In many cases, the
cause of such problems can be your database.
It may be starved for resources, or the issue
could be something else. Either way, you’d
probably rather not have to worry about it. But
what can you do to avoid such problems?

Azure SQL Database, the intelligent cloud
database from Microsoft, provides several
ways to ensure you’ll always have the database
performance you need. This e-book examines
Azure SQL Database performance from three
perspectives, including the features and
capabilities you can put to use in each area to
optimize database performance:

Dynamic resource scaling.
With Azure SQL Database, each single database you create has
a guaranteed set of dedicated resources, which you can scale
up or down at any time. You can also group databases into
elastic database pools that share a common set of dedicated
resources, enabling you to maximize resource usage and save
money while ensuring you’ll always be able to scale if and when
it’s needed.

Database performance features.
Before paying for more database resources, you’ll want to make
sure you’re getting the most out of the resources you already
have. Azure SQL Database includes powerful in-memory
technologies designed to help you do just that, regardless of
whether you’re running an online transaction processing (OLTP)
or analytics workload. These capabilities are straightforward to
use, are proven to improve performance by up to two orders of
magnitude, and can be turned on with just a few lines of code.

Intelligent performance monitoring
and tuning.
Achieving top performance isn’t just about scalability and
resources; it’s also about learning and optimizing. As an
intelligent database, Azure SQL Database is designed to do
the heavy lifting in this area for you. Automatic performance
monitoring and tuning is available across service tiers and
performance levels, ready to work on your behalf in the
background to make sure you get the most for your money
regardless of your database size, structure, or workload.

Introduction

2

When it comes to performance, Azure SQL
Database is built for you, the developer. Azure
SQL Database is designed to make your work
easier and let you focus on other priorities.
It scales on the fly, without downtime, with
capabilities that make it great for building
multitenant software as a service (SaaS) apps.
Plus, it learns and adapts to your database
workload, whatever that may be, using built-in
intelligence to continually adjust and improve
over time.

That said, there’s more to a successful app than
impressive performance. That’s why we built
Azure SQL Database to be just as intelligent in
other areas, such as availability and security,
so that you won’t need to worry about those
essentials either. Finally, we built Azure SQL
Database to let you work the way you want,
using the tools and platforms you prefer. It’s
why we call Azure SQL Database the intelligent
database for developers. Read on to learn more,
and we’re sure you’ll agree.

3

Azure SQL Database delivers predictable,
dynamically scalable performance—
without downtime.

Each single database you create is portable
and isolated from all others, with a guaranteed
set of dedicated resources (called Database
Transaction Units, or DTUs) based on the
service tier and performance level you
select for that database. You can also group
databases into elastic database pools that
share a common set of dedicated resources
(called elastic DTUs, or eDTUs), enabling you
to maximize resource usage and save money
while ensuring you’ll always be able to scale if
and when it’s needed.

Many of the other performance features of
Azure SQL Database build on those concepts,
such as being available only within certain
service tiers. So it’s worth examining each of
the concepts a bit more closely before moving
on to other ways Azure SQL Database can help
you achieve the performance you need.

Service tiers, performance levels,
and DTUs

Azure SQL Database provides a wide range
of performance levels—from 5 DTUs to
4,000 DTUs—across three service tiers: basic,

standard, and premium. The premium tier is
best suited to input/output (I/O)-intensive
workloads, providing an order of magnitude
more throughput-per-DTU and lower latency-
per-I/O than the standard and basic tiers. Each
performance level includes a specified amount
of storage; additional storage can also be
purchased.

Dynamic resource scaling

* Database Transaction Units (DTUs)

Basic

5*

Standard

3,000
S12

1,600
S9

800
S7

400
S6

200
S4

100
S3

50
S2

20
S1

10*
S0

4,000
P15

1,750
P11

1,000
P6

500
P4

250
P2

125*
P1

Premium

4

But what does this mean to you as a developer?
It enables you to start small and dynamically
scale, paying only for the resources you need,
when you need them—without having to
worry about being able to handle future
growth, or paying for the ability to do so
before it’s needed.

Here are some resources for learning more
about service tiers, performance levels, and
related concepts:

•	 Get an overview of the service tiers, including
how to choose one and the maximum
resources available within each tier.

•	 Find out about resource limits for each
performance level within each service tier.

•	 Learn more about DTUs and eDTUs,
including how these metrics guarantee a
certain level of resources for your single
database or elastic database pool, how
to determine the DTUs needed by your
workload, and what happens when you
hit your maximum DTUs.

Putting Azure SQL Database
service tiers to use

You can set or change the service tier,
performance level, or storage amount for
a new or existing single database using the
Azure portal, as shown below. It’s as easy as
selecting Pricing tier (scale DTUs) to open
the Configure performance page for your
database, after which you can:

•	 Set or change the service tier for your
workload.

•	 Set or change the performance level (DTUs)
within a service tier using the DTU slider.

•	 Set or change the storage amount for the
performance level using the Storage slider.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu

5

See how to manage resources for a single
database using the Azure portal, Azure
PowerShell, Azure CLI, Transact-SQL (T-SQL),
and the REST API. You can even configure your
database to scale automatically.

Elastic database pools

The ability to dial performance up or down
for a single database on demand is great for
many situations, especially if database usage is
relatively predictable in the short term—such
as when you’re building a line-of-business
app. But what if usage patterns are varied and
unpredictable, and what if you have many such
usage patterns to consider? For example, what
if you have a multitenant SaaS app with a single
database per tenant? How can you ensure
reliable performance for all your customers
and minimize your own database costs, without
overprovisioning each customer’s database
and paying for spare capacity that, in many
cases, will rarely or never be used?

Elastic database pools, a feature in Azure
SQL Database, are designed to solve this
very problem, making them a powerful tool
for building modern, multitenant SaaS apps.
The concept is simple: you group individual
databases into an elastic database pool, and
then allocate performance resources to that
pool. The individual databases within the
pool can then draw upon those resources
up to the limits you set. Setting up an elastic
database pool is like selecting a service tier and
performance level for a single database. There
are a few more parameters you’ll need to set for
how resources are shared, but that’s about it.

With elastic database pools, you won’t need to
focus on dialing the performance of individual

Autoscale up to 4,000 eDTUs per DB

Premium

Shares 125–4,000 eDTUs
Elastic database pool

Autoscale up to 5 eDTUs per DB

Basic

Shares 50–1,600 eDTUs
Elastic database pool

Standard

Shares 50–3,000 eDTUs
Elastic database pool

Autoscale up to 3,000 eDTUs per DB

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-single-database-resources
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-single-database-resources
https://docs.microsoft.com/en-us/azure/sql-database/scripts/sql-database-monitor-and-scale-database-powershell

6

databases up or down. Just keep an eye on the
overall resource usage within the pool, and dial
the eDTUs for the pool up or down as needed,
such as when you add new customers or deliver
new features that increase per-customer usage.
You can control the minimum and maximum
resources that are available to each database in
the pool to ensure that no one database uses
all the resources and that every database has a
guaranteed minimum set of resources. The end
result: your customers get the performance
they expect, but you won’t need to waste
money on spare performance capacity. And as
an added benefit, you’ll be able to use elastic
database jobs to manage all those databases as
if they were one.

Putting elastic database pools to use

Learn more about elastic database pools, such as:

•	 When to consider using them.

•	 How to choose the correct pool size.

•	 How to manage them using the Azure
portal, Azure PowerShell, Azure CLI,
T-SQL, and the REST API.

This Channel 9 video provides an overview of
elastic database pools and elastic database
jobs, including demos. Also, you may want
check out the previously mentioned articles
on service tiers, resource limits, and DTUs/
eDTUs—they all apply to elastic database pools
as well as single databases. Finally, if you’re
planning to build a multitenant SaaS app, read
this overview of the pros and cons of different
tenancy models.

Finally, if you’re planning to build a multitenant
SaaS app, read this overview of the pros and
cons of different tenancy models.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-jobs-overview
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-jobs-overview
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-pool
https://channel9.msdn.com/Shows/Data-Exposed/Azure-SQL-Database-Elastic-Pools
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-resource-limits
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-what-is-a-dtu
https://docs.microsoft.com/en-us/azure/sql-database/saas-tenancy-app-design-patterns

7

Before you pay more for a higher service
tier or performance level, you’ll want to
know that you’re getting the most from
the resources you already have. In-Memory
OLTP and columnstore indexes, two built-
in performance features of Azure SQL
Database, can help you do that.

For example, with these features, you could
support your workload with a P2 performance
level; without them, that same workload might
require a P6.

In-Memory OLTP improves the performance
of high-throughput transaction processing,
data ingestion, and transient data scenarios.

Columnstore indexes improve the
performance of analytical queries.

In-Memory OLTP

How do you address the performance
limitations caused by CPU and concurrency
bottlenecks? For example, say you have a
web app that, for security reasons, logs every
request and response into an audit table. The
more the app is used, the more database traffic
hits this table. If traffic grows too much, it

could degrade the entire app’s performance.
Similarly, you could be getting bogged down
by unnecessary log I/O when working with
temporary tables and table variables.

Sure, you could try to address performance
issues by rearchitecting your app—for
example, by using asynchronous functions to
unblock database calls. Or you could decouple
application components using stateless
microservices, relying on eventual data
concurrency. But what if there was a faster and
easier way to improve performance, without
changing the app itself or increasing the
resources allocated to the database?

In-Memory OLTP, a feature of Azure SQL
Database (and Microsoft SQL Server), removes
concurrency bottlenecks and makes data
access more efficient to improve performance
by a factor of up to 30. It’s useful for high-
throughput transaction processing (such as
trading and gaming), data ingestion from
events or Internet of Things (IoT) devices,
caching, data load, and temporary table and
table variable scenarios. And even though the
feature has “OLTP” in its name, that doesn’t
mean you can’t use it for certain aspects of
online analytical processing (OLAP) workloads
or mixed hybrid transaction/analytical
processing (HTAP) workloads, such as for

Database performance
features

8

staging or temporary tables. (For example,
you can use In-Memory OLTP to completely
eliminate log I/O for operations involving
temporary tables and table variables.)

In essence, In-Memory OLTP is a memory-
optimized database engine integrated into
Azure SQL Database. It improves performance
by optimizing the efficiency of data access and
transaction execution and by removing lock
and latch contention between concurrently
executing transactions. Put another way, it’s
not fast just because the data is in-memory;
it’s fast because it’s optimized for data being
in-memory.

In-Memory OLTP is also robust—you won’t
lose your data if there’s a failure. By default, all
transactions are fully durable, meaning that
you have the same durability guarantees you
get for any other table in Azure SQL Database.
When the transaction commits, all changes are
written to the transaction log on disk. If there’s
a failure at any time after the transaction
commits, your data is there when the database

comes back online. In addition, In-Memory
OLTP works with all high-availability and
disaster-recovery capabilities of Azure SQL
Database, like point-in-time restore, geo-
restore, and active geo-replication.

In-Memory OLTP and other in-memory
features—such as columnstore indexes
(discussed in the next section)—are available in
all databases in the premium tier of Azure SQL
Database, including those in premium elastic
database pools.

Putting In-Memory OLTP to use

You can take advantage of In-Memory OLTP
by using one or more of the following types of
objects:

Memory-optimized tables, which store
user data. You declare a table to be memory
optimized at the time the table is created.

Nondurable tables, which handle transient
data, such as for caching or for intermediate
result sets (replacing traditional temp

9

tables). A nondurable table is a memory-
optimized table that’s declared with
DURABILITY=SCHEMA_ONLY, meaning that
changes to these tables don’t incur any I/O.
This avoids consuming log I/O resources for
cases where durability isn’t a concern.

Memory-optimized table types, which
are used for table-valued parameters
(TVPs), plus intermediate result sets in
stored procedures. These can be used
instead of traditional table types. Table
variables and TVPs that are declared using
a memory-optimized table type inherit the
benefits of nondurable memory-optimized
tables: efficient data access and no I/O.

Natively compiled T-SQL modules, which
can further reduce the time for an individual
transaction by reducing the number of CPU
cycles required to process the operations.
You declare a T-SQL module to be natively
compiled when you create it. As of February
2018, the types of T-SQL modules that
can be natively compiled include stored
procedures, triggers, and scalar user-
defined functions.

Because these objects behave very similarly to
their traditional counterparts, you can often
use In-Memory OLTP to improve performance
while making only minimal changes to the
database and the app. You can also have both
memory-optimized and traditional disk-based
tables in the same database, and run queries
across the two.

-- configure recommended DB option
 ALTER DATABASE CURRENT SET MEMORY _
OPTIMIZED _ ELEVATE _ TO _ SNAPSHOT=ON
 GO
 -- memory-optimized table
 CREATE TABLE dbo.table1
 (c1 INT IDENTITY PRIMARY KEY
NONCLUSTERED,
 c2 NVARCHAR(MAX))
 WITH (MEMORY _ OPTIMIZED=ON)
 GO
 -- non-durable table
 CREATE TABLE dbo.temp _ table1
 (c1 INT IDENTITY PRIMARY KEY
NONCLUSTERED,
 c2 NVARCHAR(MAX))
 WITH (MEMORY _ OPTIMIZED=ON,
 DURABILITY=SCHEMA _ ONLY)
 GO
 -- memory-optimized table type
 CREATE TYPE dbo.tt _ table1 AS TABLE
 (c1 INT IDENTITY,
 c2 NVARCHAR(MAX),
 is _ transient BIT
 NOT NULL DEFAULT (0),
 INDEX ix _ c1 HASH (c1) WITH
(BUCKET _ COUNT=1024))
 WITH (MEMORY _ OPTIMIZED=ON)
 GO
 -- natively compiled stored procedure
 CREATE PROCEDURE
dbo.usp _ ingest _ table1
 @table1 dbo.tt _ table1 READONLY
 WITH NATIVE _ COMPILATION,
SCHEMABINDING
 AS
 BEGIN ATOMIC
 WITH (TRANSACTION ISOLATION
LEVEL=SNAPSHOT,
 LANGUAGE=N’us _ english’)

 DECLARE @i INT = 1

 WHILE @i > 0
 BEGIN
 INSERT dbo.table1
 SELECT c2
 FROM @table1
 WHERE c1 = @i AND is _ transient=0

 IF @@ROWCOUNT > 0
 SET @i += 1
 ELSE
 BEGIN
 INSERT dbo.temp _ table1
 SELECT c2
 FROM @table1
 WHERE c1 = @i
 AND is _ transient=1

 IF @@ROWCOUNT > 0
 SET @i += 1
 ELSE
 SET @i = 0
 END
 END

 END
 GO
 -- sample execution of the proc
 DECLARE @table1 dbo.tt _ table1
 INSERT @table1 (c2, is _ transient)
VALUES (N’sample durable’, 0)
 INSERT @table1 (c2, is _ transient)
VALUES (N’sample non-durable’, 1)
 EXECUTE dbo.usp _ ingest _ table1
@table1=@table1
 SELECT c1, c2 from dbo.table1
 SELECT c1, c2 from dbo.temp _ table1
 GO

The following T-SQL script shows an example for each of the above types of objects:

This script is from the overview and usage scenarios documentation, which covers the In-Memory OLTP technology
in both SQL Server and Azure SQL Database.

For additional information, see:

•	 An introductory blog post on In-Memory OLTP in Azure SQL Database.
•	 Documentation, videos, and demos to help you get started with In-Memory OLTP.
•	 How you can leverage In-Memory OLTP when using temporary tables, table variables, or table-valued parameters.
•	 A case study with an in-depth look at a temporary table scenario.

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/overview-and-usage-scenarios
https://azure.microsoft.com/blog/in-memory-oltp-in-azure-sql-database/
http://msdn.microsoft.com/library/dn133186.aspx
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/faster-temp-table-and-table-variable-by-using-memory-optimization
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/04/07/a-technical-case-study-high-speed-iot-data-ingestion-using-in-memory-oltp-in-azure/

11

Columnstore indexes

Data is everywhere, in every form, and it’s
growing every day. New data sources are coming
online at an ever-increasing rate, leading to new
opportunities to gain valuable insights. However,
running queries that process large datasets can
be slow, especially when using traditional, row-
based data structures. Sure, you can create the
usual indexes for the types of queries required
by canned and ad hoc reports, but what about
when that’s not enough?

To understand your options, it’s worth looking
at how data is usually stored in a relational
database: in rows. Thus the term rowstore,
which refers to data that’s logically organized
as a table with rows and columns, and then
physically stored in a row-wise data format.
When you create a traditional index in a table,
you’re creating a rowstore index. A rowstore
index works best on queries that seek into the
data, searching for a particular value, or for
queries on a small range of values. Rowstore
indexes work well for transactional workloads,
which tend to require mostly index seeks
instead of full-table scans. However, they’re not
always ideal for queries that must scan large
tables with a lot of data. But what else is there?

Columnstore indexes, a feature in Azure
SQL Database, provide the ability to store,
retrieve, and manage data by using an index
that’s based on a columnar data format, or
columnstore. Compared to rowstore indexes,
when used for queries that need to scan large
amounts of data, especially on large tables,
a columnstore index can boost query speeds
by up to 100 times. And a columnstore index
can also provide a much higher level of data
compression, typically 10 times what you could

How it works

So just how do columnstore indexes deliver such gains?
Columns in a table store data from the same domain and
commonly have similar values, which is why applying
columnar compression results in high compression rates.
High compression rates, in turn, improve query performance
by minimizing or eliminating I/O bottlenecks. High
compression rates also improve query speeds by using a
smaller in-memory footprint, enabling the database to
perform more in-memory query and data operations.

Columnstore indexes also reduce I/O and CPU usage in
other ways. Remember that queries often select only a few
columns from a table. With storage organized by column,
only those columns needed by the query are loaded into
memory and processed. This is particularly beneficial for
wide tables, such as fact tables found in data warehouses
and data marts.

In addition, columnstore indexes employ batch-mode
processing: queries are processed in batches instead of row
by row, and single CPU instructions can manipulate multiple
rows at a time. This increases performance by further
reducing CPU usage.

C13 C14 C15 C16 C17 C18C7 C8 C9 C10 C11 C12

Needed columns

Developer

Needed columns

Existing tables

Needed columns

C1 C2 C3 C4 C5 C6

12

otherwise achieve, enabling you to reduce
storage costs while improving performance.

Azure SQL Database supports two types of
columnstore indexes:

Clustered columnstore indexes, which you
can use to reduce your storage footprint and
improve performance for data warehouse
and historical data scenarios.

Nonclustered columnstore indexes,
which you can use to implement real-time
operational analytics against a transactional
database—that is, a HTAP workload.

It’s also worth noting that, in some cases, you
can replace several traditional, row-oriented
indexes that were used to serve analytical
queries with a single columnstore index.
This not only improves the performance of
analytical queries, but also reduces storage
footprint. It can even improve transaction-
processing performance because there are
fewer indexes to maintain.

Columnstore indexes can also be combined
with memory-optimized tables (that is, In-
Memory OLTP), enabling you to achieve fast
transaction processing and fast analytics
queries with the same dataset.

Columnstore indexes are available in all Azure
SQL Database databases in the premium tier.

13

These code samples are from getting started with Columnstore for real time operational analytics,
which discusses how you can run both analytics and OLTP workloads on the same database tables
at the same time.

For additional information, see:

•	 Documentation on how columnstore indexes work and when to consider using them.

•	 A blog post on the differences between clustered and nonclustered columnstore indexes.

•	 A list of other articles on putting columnstore indexes to use.

Putting columnstore indexes to use

Creating a columnstore index is easy. The following code sample shows how you can create a
nonclustered columnstore index on an existing OLTP table:

And here’s how you can create a memory-optimized table with a columnstore index:

--This example creates a nonclustered columnstore index on an existing OLTP
table.
--Create the table
CREATE TABLE t _ account (
 accountkey int PRIMARY KEY,
 accountdescription nvarchar (50),
 accounttype nvarchar(50),
 unitsold int
);

--Create the columnstore index
CREATE NONCLUSTERED COLUMNSTORE INDEX account _ NCCI
ON t _ account (accountkey, accountdescription, unitsold)

-- This example creates a memory-optimized table with a columnstore index.
CREATE TABLE t _ account (
 accountkey int NOT NULL PRIMARY KEY NONCLUSTERED,
 Accountdescription nvarchar (50),
 accounttype nvarchar(50),
 unitsold int,
 INDEX t _ account _ cci CLUSTERED COLUMNSTORE
)
 WITH (MEMORY _ OPTIMIZED = ON);
GO

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/get-started-with-columnstore-for-real-time-operational-analytics
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/07/18/columnstore-index-differences-between-clusterednonclustered-columnstore-index/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/tag/columnstore-index/

14

Intelligent performance
monitoring and tuning

Achieving top performance isn’t just about
scalability and resources; it’s also about
optimization.

Fortunately, Azure SQL Database includes built-
in intelligence to automate this for you—by
routinely monitoring performance, tuning your
database, and optimizing query processing.
Automatic performance monitoring and
tuning is available across service tiers and
performance levels, ready to work on your
behalf in the background to make sure you get
the most for your money regardless of your
database size, structure, or workload.

Intelligent Insights

Monitoring database performance starts with
monitoring resource utilization. Sure, you can
do this manually by using graphical tools in the
Azure portal or using dynamic management
views. However, this requires work—and as
a manual process, it doesn’t scale. Besides,
you probably have better things to do than
watching a bunch of performance counters
and, if one looks off, figuring out what it means
and then seeing what you can do about it.

With Azure SQL Database, you’ll always know
what’s going on with your database. Azure SQL
Database Intelligent Insights does the work for

you, employing advanced artificial intelligence
(AI) to automatically monitor performance
and alert you of any issues. Intelligent Insights
even identifies the root cause of the issue and,
when possible, provides recommendations
for resolution. It works whether you have one
database or thousands, providing a powerful
combination of proactive monitoring and
faster mitigation of potential issues to help you
optimize database performance, decrease use
of DevOps resources, and ultimately reduce
your total cost of ownership (TCO).

Putting Intelligent Insights to use

As a smart performance diagnostics log,
Intelligent Insights can be easily integrated with
other services, including Azure Log Analytics,
Azure Event Hubs, Azure Storage, and third-
party products. Integration with Log Analytics is
one of the easiest ways to get started, enabling
you to view the output of Intelligent Insights
with a web browser. Integration with Event Hubs
is typically used to configure custom monitoring
and alerting scenarios. Integration with Storage
helps with custom application development,
such as custom reporting, data archiving, and
data retrieval.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights

15

Integration of Intelligent Insights with Azure
services is achieved by first enabling Intelligent
Insights logging (SQLInsights log), and then
configuring Intelligent Insights log data to
stream into the desired product or service.

For additional information, see:

•	 Setting up Intelligent Insights with Azure
Log Analytics, Event Hubs, Azure Storage,
and third-party tools or for custom
alerting and monitoring.

•	 Using Intelligent Insights to discover and
troubleshoot performance issues.

•	 How Intelligent Insights are generated
based on query duration, timeout requests,
excessive wait times, or errored requests.

Automatic tuning

Azure SQL Database can do more than just
intelligently monitor database performance;
it can intelligently optimize your database,

How it works

Intelligent Insights analyzes Azure SQL Database performance
by comparing database workload for the past hour with a
“baseline” that’s calculated based on the past seven days. In
doing so, it takes into account those queries determined to
be the most significant to database performance, such as the
largest and most repeated queries. Because each database
is unique in its structure, data, usage, and application, each
baseline workload is specific and unique to the individual
database instance. Intelligent Insights also monitors absolute
operational thresholds and detects issues such as excessive
wait times, critical exceptions, and issues with query
parameterizations that might affect database performance.

Performance issues are detected via the use of sophisticated AI
models, which are based on the behavior of thousands upon
thousands of Azure SQL Database instances. The metrics used
to measure and detect database performance issues are based
on query duration, timeout requests, excessive wait times, and
errored-out requests, as explained in the Detection metrics
section of the documentation.

When a performance issue is detected, Intelligent Insights
analyzes the root cause and generates a performance
diagnostics log with insights into what’s happening within your
database—including information that can include metadata
about the database (such as a resource UDI), observed time
range, metrics that caused the insight to be generated,
affected queries and error codes, the detection pattern that
triggered the event, a root cause analysis in a human-readable
format, and, where possible, a recommendation about what to
do about it.

Every detected issue is tracked throughout its life cycle, with
updates provided in the diagnostic log at 15-minute intervals,
making it easy to stay on top of things until performance is
back up to par. When a performance issue is detected, the issue
is flagged as “Active.” After the issue is mitigated, the status is
changed to “Verifying.” When Azure SQL Database confirms
that the issue is resolved, the status is updated to “Complete.”

Here’s an Intelligent Insights report in Azure
SQL Analytics:

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#set-up-intelligent-insights-with-log-analytics
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#set-up-intelligent-insights-with-log-analytics
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#set-up-intelligent-insights-with-event-hubs
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#set-up-intelligent-insights-with-storage
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#custom-integrations-of-intelligent-insights-log
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#custom-integrations-of-intelligent-insights-log
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights-troubleshoot-performance
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights-troubleshoot-performance
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#query-duration
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#timeout-requests
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#excessive-wait-times
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#errored-requests
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights#detection-metrics
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights-troubleshoot-performance
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-intelligent-insights-troubleshoot-performance

16

too. With automatic tuning, Azure SQL
Database continuously monitors query
performance, generates and applies tuning
recommendations, and tests each action
taken to verify that it contributes to improved
performance. If performance doesn’t improve,
that specific tuning action is undone. The
longer a database uses automatic tuning, the
better it performs.

As with Intelligent Insights, automatic tuning is
AI driven, with Azure SQL Database continually
learning horizontally from all the databases
it supports. Automatic tuning is safe to use,
and it’s perhaps one of the most important
features you can enable to provide stable,
peak-performing workloads. Automatic tuning
is designed not to interfere with database
workloads. Tuning recommendations are
applied only during periods of low utilization
and can be temporarily disabled by the system
itself to protect workload performance.
Of course, you’ll have a clear picture of
everything that automatic tuning does to
improve performance through the tuning
recommendations view.

There are two main aspects to automatic
tuning in Azure SQL Database:

Automatic index management identifies
indexes that should be added or removed.
There are two settings:

•	 CREATE INDEX, which identifies
the indexes that might improve
the performance of your workload,
creates the indexes, and verifies that
they have improved the performance
of the queries.

•	 DROP INDEX, which identifies
redundant and duplicate indexes in
addition to indexes that weren’t used
for long periods of time.

Automatic plan correction identifies
and addresses problematic SQL query
execution plans. When automatic plan
correction is enabled via the FORCE LAST
GOOD PLAN setting, if a query execution
plan is identified to be slower than the
previous good execution plan, the query
execution plan is reverted back to the last
known good plan instead of using the
regressed query execution plan.

Putting automatic tuning to use

Prior to 2018, automatic tuning could
be manually enabled on your database
subscription (see Enable automatic tuning for
more information). In 2018, automatic tuning
will be on by default, as described in Automatic
tuning will be a new default, and this setting
will gradually roll out across the entire Azure
platform.

When enabled, automatic tuning can function
autonomously. If you want more control,
you can turn off the automatic application
of tuning recommendations and apply them
manually through the Azure portal. It’s also
possible to manually apply automatic-tuning
recommendations using the scripts and tools of
your choice.

Automatic-tuning options (CREATE INDEX,
DROP INDEX, and FORCE LAST GOOD PLAN)
can be independently turned on or off per
database, or they can be configured on a logical
server and applied on every database that

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable
https://azure.microsoft.com/en-us/blog/automatic-tuning-will-be-a-new-default/
https://azure.microsoft.com/en-us/blog/automatic-tuning-will-be-a-new-default/

17

inherits settings from the server—making it easy
to manage automatic-tuning options across
many databases. You can enable automatic
tuning at the server level using the Azure portal
or the REST API. You can also enable automatic
tuning at the database level using the Azure
portal, the REST API, or T-SQL (equivalent to
configuring it through the portal).

For example, to enable automatic tuning on
a single database via T-SQL, connect to the
database and execute the following:

ALTER DATABASE current SET
AUTOMATIC _ TUNING = AUTO
/* possible values AUTO,
INHERIT and CUSTOM */

ALTER DATABASE current
SET AUTOMATIC _ TUNING (
FORCE _ LAST _ GOOD _ PLAN =
[ON | OFF | DEFAULT],
CREATE _ INDEX = [ON | OFF |
DEFAULT],
DROP _ INDEX = [ON | OFF |
DEFAULT])

In this example, setting automatic tuning to
AUTO will apply Azure defaults. By setting it
to INHERIT, the configuration of automatic
tuning will be inherited from the parent server.
If you choose CUSTOM, you’ll need to manually
configure automatic tuning, which you can do
using the following T-SQL code:

In this example, setting any individual tuning
option to ON will override the setting that the
database inherited and enable the tuning option.
Similarly, setting it to OFF will override the
inherited setting and disable the tuning option.
Setting it to DEFAULT will use the inherited setting.

For additional information, see:

•	 How automatic tuning works in Azure SQL
Database and SQL Server 2017.

•	 How to enable automatic tuning at the
server or database level.

•	 How to configure automatic tuning using
T-SQL.

•	 How to manually review and apply
automatic-tuning recommendations.

•	 A blog article on how various organizations
have used automatic tuning.

Adaptive query processing

The built-in intelligence in Azure SQL Database
goes further than monitoring or tuning. Azure
SQL Database is intelligent enough to adapt
its query processing to your specific database
workload, at a level you might not even be
aware of. Ever heard of batch mode memory
grant feedback, batch mode adaptive joins, or
interleaved execution? If so, you’ll appreciate
what Azure SQL Database does for you
automatically in these areas. If not, don’t worry—
Azure SQL Database has still got your back.

Batch mode memory grant feedback, batch
mode adaptive joins, and interleaved execution
are all examples of the adaptive query
processing family of features in Azure SQL
Database—the first three to be introduced,
in fact. They’re designed to improve query
processing by applying “learn and adapt” query
optimization strategies to your database’s
runtime workload, helping to address
performance issues related to historically
intractable query optimization problems.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable#rest-api
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable#enable-automatic-tuning-on-an-individual-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable#enable-automatic-tuning-on-an-individual-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable#enable-automatic-tuning-on-an-individual-database
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable#rest-api-1
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable#t-sql
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automatic-tuning-enable
https://azure.microsoft.com/en-us/blog/automatic-tuning-introduces-automatic-plan-correction-and-t-sql-management/
https://azure.microsoft.com/en-us/blog/automatic-tuning-introduces-automatic-plan-correction-and-t-sql-management/
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-advisor-portal
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-advisor-portal
https://azure.microsoft.com/blog/artificial-intelligence-tunes-azure-sql-databases/
https://azure.microsoft.com/blog/artificial-intelligence-tunes-azure-sql-databases/
https://docs.microsoft.com/en-us/sql/relational-databases/performance/adaptive-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/adaptive-query-processing

18

At a high level, before Azure SQL Database
executes a specific query, the query optimization
process generates a set of feasible execution
plans. The “cost” of each option is estimated, and
the plan with the lowest estimated cost is used
for query execution. But sometimes the plan
chosen by the query optimizer isn’t optimal; for
example, the total number of rows processed
at each level of the query plan (referred to as
the cardinality of the plan) might be incorrect,
leading to an incorrect estimation of the query-
processing cost for that plan. Because estimated
processing costs help determine which plan is
selected, incorrect cardinality estimates might
result in the selection of a nonoptimal plan.

Putting adaptive query processing
to use

You can make your database workloads
automatically eligible for adaptive query
processing by setting your database
compatibility level to 140, as illustrated in the
following T-SQL example:

This example is from the documentation on
adaptive query processing, which covers each
of the three cases in greater detail. You can also
find more information in the blog articles on
batch mode adaptive joins, batch mode memory
grant feedback, and interleaved execution for
multi-statement table valued functions.

ALTER DATABASE
[WideWorldImportersDW] SET
COMPATIBILITY _ LEVEL = 140;

How it works

Let’s take a closer look at how adaptive query processing works
in each of the three cases:

Batch mode memory grant feedback.
A query’s post-execution plan includes the minimum required
memory needed for execution and the ideal memory grant
size to have all rows fit in memory. However, performance
suffers when memory grants are incorrectly sized; excessive
grants waste memory and thus reduce concurrency, whereas
insufficient memory grants cause expensive spills to disk. By
addressing repeating workloads, batch mode memory grant
feedback recalculates the actual memory required for a query
and then updates the grant value for the cached plan. When
an identical query statement is executed, the query uses the
revised memory grant size instead of the original one.

Batch mode adaptive joins.
This adaptive query-processing feature enables the choice of
a hash join method or nested loop join method to be deferred
until after the first input has been scanned. The adaptive join
operator defines a threshold that’s used to decide when to
switch to a nested loop plan, enabling the plan to dynamically
switch to a better join strategy during execution. If the row
count of the build join input is small enough that a nested loop
join would be more optimal than a hash join, the plan switches
to a nested loop algorithm. If the build join input exceeds a
specific row count threshold, no switch occurs, and the plan
continues with a hash join.

Interleaved execution for multi-
statement table valued functions.
Interleaved execution changes the unidirectional boundary
between the optimization and execution phases for a
single-query execution and enables plans to adapt based on
the revised cardinality estimates. During optimization, if a
candidate for interleaved execution is encountered (currently
these are multi-statement table valued functions, or MSTVFs),
Azure SQL Database will pause optimization, execute the
applicable subtree, capture accurate cardinality estimates, and
then resume optimization for downstream operations.

https://docs.microsoft.com/en-us/sql/relational-databases/performance/adaptive-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/adaptive-query-processing
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2017/04/19/introducing-batch-mode-adaptive-joins/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/11/29/introducing-batch-mode-adaptive-memory-grant-feedback/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/11/29/introducing-batch-mode-adaptive-memory-grant-feedback/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2017/04/19/introducing-interleaved-execution-for-multi-statement-table-valued-functions/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2017/04/19/introducing-interleaved-execution-for-multi-statement-table-valued-functions/

19

No matter what your app does, you need to
ensure that it performs. When you develop
with Azure SQL Database, you won’t need to
spend a lot of time on database performance.
You can dynamically scale database resources
at any time, knowing that performance is
already optimized to help you get the most
out of those resources you’re paying for.
And as your app runs, Azure SQL Database
automatically monitors and tunes your
database for you, employing sophisticated AI
to continually optimize performance and adapt
to changing workloads.

With Azure SQL Database, the intelligent
database for developers, get back to what you
love: coding.

Conclusion

Get $200 to try Azure SQL Database with an Azure free account, and
then watch the video to create your first database in just a few minutes.

https://azure.microsoft.com/en-us/free/services/sql-database/
https://azure.microsoft.com/en-us/resources/videos/create-sql-database-on-azure/

