

https://azure.com/free?utm_source=ebook&utm_medium=print&utm_campaign=gocontainersebook

Liz Rice

How to Containerize
Your Go Code

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-03854-2

[LSI]

How to Containerize Your Go Code
by Liz Rice

Copyright © 2018 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Susan Conant
Production Editor: Nicholas Adams

Interior Designer: David Futato
Cover Designer: Randy Comer

March 2018: First Edition

Revision History for the First Edition
2018-02-28: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. How to Contain‐
erize Your Go Code, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the authors disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is sub‐
ject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

This work is part of a collaboration between O’Reilly and Microsoft. See our state‐
ment of editorial independence.

http://oreilly.com/safari
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

How to Containerize Your Go Code. 1
Introduction and Motivations 1
What Is a Container? 2
Bundling Go Code into a Container Image 2
Environment Variables and Port Mappings 13
Recap 17

iii

How to Containerize Your Go Code

Introduction and Motivations
Learning about containers is a bit like learning about Linux or learn‐
ing about Go: it’s potentially a huge topic! But everyone has to begin
somewhere. This lesson will give you an introduction to some of the
key concepts of containers and walk you through some examples of
using Docker containers with Go code.

Example Code
There is example code throughout this lesson. If you’d like to try it
out for yourself, the easiest way is to download the code with by
using the go get command, as follows:

$ go get github.com/lizrice/hello-container-world/...

Using Docker
If you’ve never used Docker before, good instructions are available
for installing it and verifying that everything is set up correctly.
After you’ve done that, you’ll be ready to work through the examples
in this lesson.

Docker 1.13 reorganized the command-line interface
(CLI) to refer to objects (e.g., docker image build
instead of docker build). As of this writing, the older
versions work as aliases, but it is more future-proof to
get used to the new style.

1

https://www.oreilly.com/ideas/should-you-containerize-your-go-code
https://docs.docker.com/engine/getstarted/step_one/

What Is a Container?
Containers let you isolate an application so that it’s under the
impression it’s running on its own private machine. In that sense, a
container is similar to a virtual machine (VM), but it uses the oper‐
ating system kernel on the host rather than having its own.

You start a container from a container image, which bundles up
everything that the application needs to run, including all of its run‐
time dependencies. These images make for a convenient distribu‐
tion package.

The isolation that fools a container into thinking it has control over
an entire Linux machine is created by using namespaces and control
groups. You don’t need to know the details of these to use contain‐
ers, but people tell me they find this talk I gave at Golang UK helps
them to understand what’s happening when you start a container.

Perhaps the best way to get to grips with containers and container
images is to create and work with them. In this lesson, we’ll work
through some examples that show you how to do the following:

• Create a container image to bundle your Go code with static file
dependencies

• Feed environment variables into containers, and open ports so
that you can get requests into them

Like many things in software engineering, there are several different
approaches you can take to achieve the same thing. In this lesson,
we’ll look at some options for exposing ports and passing in envi‐
ronment variables to your code. Armed with knowledge of how
these different approaches work, you should be in a good position to
think about what makes most sense for your Go (and other)
projects.

Bundling Go Code into a Container Image
If you’re going to work along with the example code, you should
change directory to $GOPATH/src/github.com/lizrice/hello-
container-world/Example1.

Let’s begin with very simple web server built in Go that uses static
template files. This main.go file does all the work:

2 | How to Containerize Your Go Code

https://www.youtube.com/watch?v=HPuvDm8IC-4

package main

import (
 "html/template"
 "net/http"
)

func handler(w http.ResponseWriter, r *http.Request) {
 t, err := template.ParseFiles("templates/page.html")
 if err != nil {
 panic(err)
 }
 t.Execute(w, nil)
}

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":8080", nil)
}

This loads the page content from a template file called page.html,
that the server code expects to find in a directory called templates.
Here’s a very simple example of a template:

<h1>Hello!</h1>

<p>I'd tell you a joke about integers, but there would be no
point</p>

You can run the following to check that it works:

$ go run main.go

In your browser, navigate to 0.0.0.0:8080 (or localhost:8080), and
you should see the web page.

Now let’s build it into a standalone executable:

$ go build -o hello .

Running ls -ltr shows us what has been built:

$ ls -ltr
total 14816
-rw-r--r--@ 1 liz staff 87 7 Feb 13:58 page.html
-rw-r--r--@ 1 liz staff 256 7 Feb 14:05 main.go
-rwxr-xr-x 1 liz staff 7574044 7 Feb 14:16 hello

You can run the executable, reload the web page, and all should be
exactly as before:

$./hello

Bundling Go Code into a Container Image | 3

Let’s try copying that file somewhere else and running it. In this
example, I’m copying it to my home directory, moving into that
home directory, and then running the code:

$ cp hello ~
$ cd ~
$./hello

Things look fine until you reload the web page in the browser. At
that point, the web server goes to look for templates/page.html. In
the absence of any other path, the only place it looks for the tem‐
plates directory is the directory that you ran the code in—in this
case, the home directory. But there’s nothing called templates/
page.html in that directory! You’ll see an error like this:

http: panic serving [::1]:62402: open templates/page.html: no
such file or directory

The executable binary that we’ve built refers to an external static file.
If you want to deploy this executable (for example, on another
machine or in a VM in the cloud) you’ll need to ensure that you
copy the static file along with the executable.

That’s trivial if you only have one template file, but a real web site
will likely have dozens, hundreds, maybe even thousands of static
files. It would be nice to bundle everything up into one place so that
they can be moved around together.

There are a couple of options for this. One approach is to use go-
bindata to convert the static content into native Go code that you
can then compile into the executable. Another option—and it’s the
one we’ll discuss here—is to include the files inside a container
image.

Building a Container Image
Here is the Dockerfile that describes what we want inside our con‐
tainer:

FROM scratch

EXPOSE 8080

COPY hello /
COPY templates templates

CMD ["/hello"]

4 | How to Containerize Your Go Code

https://github.com/jteeuwen/go-bindata
https://github.com/jteeuwen/go-bindata

Let’s look at this line by line.

FROM scratch

The Dockerfile starts with a FROM line that gives a starting point for
the image we’re building. In this example, our go binary executable
and its accompanying template are all we need, and we don’t have
any dependencies. That means we can start from scratch, literally.
“FROM scratch” means there’s nothing else in our container aside
from what we put in with the rest of the Dockerfile.

EXPOSE 8080

The EXPOSE directive informs Docker about any ports we want to be
able to access. If we don’t open ports, we won’t be able to access
them from outside the container. Because the web server listens on
port 8080, we need to be able to send requests to that port.

We could omit this line and instruct Docker what ports to open at
the point we run the container—we’ll see that approach in the next
section—but for now, because we have port 8080 hardcoded into the
web server code, we always want port 8080, and it’s perfectly reason‐
able to define it in the Dockerfile so that it’s built in to the container
image.

COPY hello /

The COPY directive copies files or directories from the build context
(the directory in which you run the build) into the container. Here
we’re copying the hello executable into the root directory of the con‐
tainer.

COPY templates templates
Here we copy the contents of the templates directory into the con‐
tainer.

CMD [“/hello”]
This line directs the container as to which command to execute
when the container is run. Why the square brackets? If you omit
them, this is the shell form of CMD, and Docker will try to execute
the command in a shell. More specifically, it will run /bin/sh -c
<command>. But that won’t work for us, because we began from
scratch we don’t even have /bin/sh inside the container!

Bundling Go Code into a Container Image | 5

https://docs.docker.com/engine/reference/builder/

A Linux Executable
Whatever operating system you’re using, the code that runs inside a
container needs to be a Linux binary. Fortunately, this is really sim‐
ple to obtain, thanks to the cross-compilation support in Go:

$ GOOS=linux go build -o hello .

If you’re on Mac OS X or Windows, you won’t be able to run the
binary this produces as-is on your machine, but you can run it
inside a container.

Building the Container Image
Now, we need to run a command to build the container image:

$ docker image build -t hello:1 .

The -t flag determines what we’re going to call this container—for
now, I have gone with hello:1, meaning that I’m giving it the name
“hello” and a tag “1” to indicate which example it’s from. The dot
instructs Docker to build in the context of the current directory. By
default, Docker looks for a Dockerfile called Dockerfile.

As programmers in a compiled language, we’re used the idea that a
build would generate some sort of executable file, but a Docker
image build doesn’t create anything that you can readily see in the
filesystem. (It does write information about the image to disk, but as
a user, you’re not expected to know or care about that.) Instead of
looking in the file system for your image, you use a docker com‐
mand to list the images.

$ docker image ls
REPOSITORY TAG IMAGE ID
CREATED SIZE
hello 1 6126f6757608 19
seconds ago 7.57 MB

You should see “hello” (if that’s what you called it) in the list of
images. One thing that might be of interest is the size: the container
image is only a little bigger than its contents (which are dominated
by 7.2 MB in the executable):

$ ls -lh hello
-rwxr-xr-x 1 liz staff 7.2M 9 Feb 11:49 hello

This container image is “deployable,” meaning that it can be run
anywhere that there’s a docker engine running. You could store it in

6 | How to Containerize Your Go Code

a container registry, and from there it could be pulled onto any
machines that will run it. But for the moment we want to run it
locally and check that it contains the web server, including its static
file directory.

Running the Container
You can run the container as follows:

$ docker container run -P hello:1

The -P flag directs Docker to expose the ports that were specified in
the Dockerfile.

Note that in contrast to running executable files directly (where you
need to specify the location, or for the file to be in your path), you
can run this from any directory.

Open another terminal window to have a look at what containers
are running:

$ docker ps
CONTAINER ID IMAGE COM-
MAND CREATED STATUS
PORTS NAMES
d5963ca57417 hello:1 "/
hello" 4 seconds ago Up 2 seconds
0.0.0.0:32779->8080/tcp reverent_archimedes

We can see that a container has been started and given the random
name “reverent_archimedes” (of course, you’ll see something differ‐
ent). It’s executing “/hello” (as specified by the CMD line in the
Dockerfile).

The PORTS column shows us how ports exposed on the container
can be accessed from the host. In the example, Docker has assigned
port 32779; yours will likely vary.

You can check this is the case by browsing to 0.0.0.0:<port> (e.g.,
0.0.0.0:32779), where you should see the web server running.

Digging Deeper: What’s Inside the Container?
I said earlier that there’s no /bin/sh within the container, but you
might not want to accept that without further investigation! Let’s see
exactly what has been built from scratch.

Bundling Go Code into a Container Image | 7

https://blog.codeship.com/overview-of-docker-registries/

Now, many container images are built from a base image that
includes Linux such as Ubuntu, CentOS, or Alpine. If you have one
of those you can run a command like docker exec -it <con
tainer> /bin/bash to get a shell, inside which you could run your
favorite commands like ls to have a good look around.

But in this case, we don’t have /bin/bash (or even /bin/sh) within our
container, and that docker exec command results in an error:

$ docker container exec -it reverent_archimedes /bin/sh
rpc error: code = 2 desc = oci runtime error: exec failed: con-
tainer_linux.go:247: starting container process caused "exec:
\"/bin/sh\": stat /bin/sh: no such file or directory"

We can’t run a command within the container to look at its file sys‐
tem, but what we can do is take a snapshot of the filesystem by using
the docker export command. This creates a tar archive of the con‐
tainer’s file system, which we can then examine by using tar -xvf:

$ docker container export -o output reverent_archimedes
$ tar -xvf output
x .dockerenv
x dev/
x dev/console
x dev/pts/
x dev/shm/
x etc/
x etc/hostname
x etc/hosts
x etc/mtab
x etc/resolv.conf
x hello
x proc/
x sys/
x templates/
x templates/page.html

The first thing to notice is that the files we copied into the container
are just as you’d expect: the hello executable is in the root directory,
and the templates directory (along with its contents) is there, too.

There is a .dockerenv file—you can use cat to verify that it’s empty.

And, there are four more directories inside the root directory. You
probably don’t need to know the details but very briefly they are
pseudo file systems for Linux:

8 | How to Containerize Your Go Code

dev

This holds device files—we can see interfaces to the system con‐
sole, pseudo-terminals (pts) and shared memory (shm).

etc

This holds system config files used by the container.

proc

This holds information about processes running in the con‐
tainer.

sys

This holds nonprocess status information.

Even if you’re running on a Mac or Windows, the container image is
Linux-y.

Why Build from Scratch?
You’ll see a very large number of containers that are built on top of a
Linux base image. Their Dockerfiles begin with a line that specifies
the base image, for example FROM alpine or FROM ubuntu. But as a
Go programmer, you might well be better off building from scratch
for a couple of reasons.

Smaller images
Many programming languages, particularly scripted ones like Ruby
or Python, rely on some components—not least of which the actual
executable that will run your code. You would typically need to
install these components on top of a Linux distribution. There are
official Docker images that developers can start with these compo‐
nents already baked in, and some of them are pretty complicated.
For example (at least as of this writing), the latest version of the
Python official image uses buildpack-deps, which in turn is built on
the debian:jessie image.

All this code adds up to a pretty sizeable image. The Python image is
nearly 700 MB, and the base Debian image alone is 123 MB. This is
a lot more than the image we built from scratch, which was less than
7 MB.

Bundling Go Code into a Container Image | 9

https://en.wikipedia.org/wiki/Device_file
https://hub.docker.com/_/python/
https://hub.docker.com/_/buildpack-deps/
https://hub.docker.com/_/debian/

If you decide that you really do want Linux functional‐
ity within your container, there is a pared-down distri‐
bution called Alpine that is a much more reasonable 4
MB.

REPOSITORY TAG IMAGE ID
CREATED SIZE
debian jessie 978d85d02b87 10
hours ago 123 MB
python latest 3984f3aafbc9 2
weeks ago 690 MB
alpine latest 88e169ea8f46 2
months ago 3.98 MB

As a Go programmer, you don’t (as a rule) need any of this Linux
code to run your binary. So, there’s no real need to build it in to your
image.

Smaller attack surface
The less code there is within your container, the less likely it is to
include a vulnerability. Thus, it’s good practice to leave out anything
you don’t need. As an illustration, remember the ShellShock issue
that affects bash? If your container doesn’t have bash in the first
place, it couldn’t possibly be affected. The host machine might be,
but the point is that you wouldn’t need to worry about applying
patches to container images as well as the host if those containers
don’t have the affected code.

Are there any downsides? Well, as we’ve already seen, you can’t sim‐
ply run a shell like /bin/bash within your container, which could be
seen as a lack of convenience, or as a security benefit, depending on
your perspective. In a future lesson, we’ll look at a method for work‐
ing around this, so you can use scratch-based container images and
still get the benefits of being able to run your favorite commands.

Cleaning Up
You can stop the running container by pressing Ctrl-C but that
doesn’t get rid of it, it merely stops it. You can list all of the contain‐
ers (including those that aren’t running), as follows:

$ docker container ls -a
CONTAINER ID IMAGE COM-
MAND CREATED STA-
TUS PORTS NAMES

10 | How to Containerize Your Go Code

https://alpinelinux.org/
https://en.wikipedia.org/wiki/Shellshock_(software_bug)

d5963ca57417 hello:1 "/
hello" 44 seconds ago Exited (2) 42
seconds ago reverent_archimedes

Note that this is a container, not the container image. When you
start a container, it gets its own copy of the filesystem image that was
defined in the container image. You can have many containers on
your system (either running or stopped) that were all started from
the same container image.

To clean up the container, do this:

$ docker container rm reverent_archimedes

You’ll see the container has gone if you rerun the ls -a command.

Cleaning up containers as you go along like this can become pretty
tedious, but there are a couple of alternatives:

• Add the --rm flag when you run the container (e.g., docker run
--rm -P hello:1), and it will be removed when it is stopped.

• Whenever you want to tidy up old, stopped containers you can
simply run docker container prune.

Summary
In this section, we’ve seen a basic example of building and running
Go code within a container. Here are the important takeaways:

• There are two steps to the build: compiling the Go code, and
then building the container image.

• The container image has everything we need to execute the
code (and nothing else, because we started from scratch).

We talked about the pros and cons of building container images
from scratch (the efficient, slimline approach) or on top of a Linux
distribution (which gives you the option to run Linux commands
within the container, which could be convenient or a security risk,
depending on your point of view).

You have also tried out several useful Docker commands.

Bundling Go Code into a Container Image | 11

Image Commands
docker image build

Builds a container image

docker image ls

Lists container images found on your local machine

Container commands
docker container run

Creates a container from a container image, and runs code
inside the container

docker container exec

Connects to a container and runs another command

docker container export

Exports a snapshot of the container file system as a tar archive

docker container ls

Lists running containers

docker container prune

Removes stopped containers

We have also seen how, when you start a container, Docker can
make ports available from the container to the host. Those ports are
not accessible by default; you must ask Docker to expose those ports
so that you can access them.

Further, the port number on the host can be completely different
from the port number within the container—or put another way, the
code within the container is using some port number X, but if you
want to access it from the host, you need to address the code using
port Y; Docker does the mapping from port X to port Y.

In the next section, you’ll learn more about how you can control
these port mappings, and also how you can supply configuration
information to your containerized code through the use of environ‐
ment variables.

12 | How to Containerize Your Go Code

Environment Variables and Port Mappings
Let’s modify the web server code so that it uses an environment vari‐
able to determine the port on which it should listen. Change the
main() function in main.go to this (or use the code in the Example2
directory):

func main() {
 port := os.Getenv("WEB_SERVER_PORT")
 if port == "" {
 port = ":8080"
 }
fmt.Printf("Serving on port %s\n", port)
 http.HandleFunc("/", handler)
 http.ListenAndServe(port, nil)
}

This defaults to 8080, but you can change the value by setting an
environment variable. (For brevity I’m holding the port value as a
string including the preceding colon that http.ListenAndServe
expects. In production code, you’d probably want to allow the envi‐
ronment variable to be only the port number, without the colon.)

You can try this out locally on your machine (from inside the Exam‐
ple2 directory):

$ export WEB_SERVER_PORT=":8081"
$ go build -o hello .
$./hello
Serving on port :8081

Now, you should find the service by browsing to 0.0.0.0:8081.

When we run the same code within a container, we need a way to
define the environment variable so that the code knows what port to
use.

Let’s explore some options for passing the environment variable into
the code when it’s running in a container.

Building env vars into the container image
The first option is to define the environment variable within the
Dockerfile. We’ll do this by adding the following line (you’ll see this
in the Example2 Dockerfile):

ENV WEB_SERVER_PORT :8081

We can then refer to that variable to define what port we’ll expose:

Environment Variables and Port Mappings | 13

EXPOSE $WEB_SERVER_PORT

Try that out by building and running the container as follows:

$ GOOS=linux go build -o hello .
$ docker build -t hello:2 .
$ docker run -P --rm hello:2
Serving on port :8081

The code tells us it’s listening on port 8081, but that’s only true from
its perspective within the container. As before, this will have been
mapped to a different port on the host, which we can see by looking
at the running containers:

$ docker container ls
CONTAINER ID IMAGE COM-
MAND CREATED STATUS
PORTS NAMES
3e8d5501f7a3 hello:2 "/
hello" About a minute ago Up About a
minute 0.0.0.0:32789->8081/tcp nervous_khorana

We can see the website up and running by browsing to 0.0.0.0:32789
(remember to use the port that you see in the output of docker con
tainer ls).

When you stop the container (Ctrl-C will do it) the --rm flag
instructs Docker to remove the container altogether (we mentioned
this briefly in the previous section).

Overriding the env var
You can use the -e flag to override environment variables defined in
the Dockerfile, but beware: this might not be sufficient!

Let’s override WEB_SERVER_PORT at the point we run the container:

$ docker run --rm -P -e WEB_SERVER_PORT=:8082 hello:2
Serving on port :8082

This looks good. We can see that the executable has picked up the
definition of WEB_SERVER_PORT from the -e flag, but take a look at
the running container and its port assignments:

$ docker container ls
CONTAINER ID IMAGE COM-
MAND CREATED STATUS
PORTS NAMES
827838bbbb5c hello:2 "/
hello" 12 seconds ago Up 10 seconds
0.0.0.0:32792->8081/tcp happy_poincare

14 | How to Containerize Your Go Code

The problem is that the EXPOSE command was built in to the con‐
tainer image with a port definition of 8081. The Go executable
inside the container is happily serving on port 8082, but that’s not
accessible from the host! You can try browsing to 0.0.0.0:32792, but
there will be nothing to see.

Fortunately, we can tell Docker what port to expose when we run
the container, as follows:

$ docker run --rm -p 8082 -e WEB_SERVER_PORT=:8082 hello:2
Serving on port :8082

This time, the lowercase p flag tells Docker which port we want
opened up, and this matches the port number we’ve asked the exe‐
cutable to serve on (via the environment variable):

$ docker container ls
CONTAINER ID IMAGE COM-
MAND CREATED STATUS
PORTS NAMES
7b1e68f267fa hello:2 "/
hello" About a minute ago Up About a
minute 8081/tcp, 0.0.0.0:32793->8082/tcp nervous_ramanujan

The host port 32793 is now mapped to port 8082, and we can
browse our web server on that port successfully.

Specifying the Port Mapping
It’s getting a bit tedious having to look up the host port that Docker
assigns when we run a container. If you prefer, you can specify the
container port–to–host port mapping. In the following example, -p
<host port>:<container port>, we instruct Docker as to which
web service to make available, in this case, host port 8000.

$ docker run --rm -p 8000:8082 -e WEB_SERVER_PORT=:8082 hello:2
Serving on port :8082

You can browse to 0.0.0.0:8000 and find the web page there.

Back to the Dockerfile
If we’re going to specify the port mapping and environment vari‐
ables at runtime, we might as well take the EXPOSE and ENV directives
out of our Dockerfile. It’s good practice to keep your Dockerfiles as
short as possible because each directive adds a file system layer and
increases the build time.

Environment Variables and Port Mappings | 15

You can prove that this works by building and running the con‐
tainer with the provided, shorter Dockerfile2:

$ docker build -f Dockerfile2 -t hello:2 .
$ docker run --rm -p 8000:8082 -e WEB_SERVER_PORT=:8082 hello:2
Serving on port :8082

As before, the server is available at 0.0.0.0:8000 (or localhost:8000).

Summary
You can use environment variables to pass configuration informa‐
tion to your containerized code (in true 12-factor app form). You
also need to expose container ports so that you can make requests of
your code.

We’ve seen that you have choices when it comes to defining these
environment variables and exposed ports: you can build them in to
the container image by defining them in the Dockerfile, or you can
set them at runtime on the command line.

If you define these things in the Dockerfile, they are built into the
container image, and you don’t need to remember to add them at
runtime. This is a good approach for things that are hardcoded; for
example, in the previous section when we had a hardcoded port in
the Go code, there was no reason not to define the exposed port at
build time by defining it in the Dockerfile. Defining the port with an
environment variable in the Dockerfile, as we did at the beginning
of this section, is also a perfectly sensible approach when you have
no reason to override it at runtime.

Another example for which it really makes sense to define at build
time through the Dockerfile would be an environment variable that
instructs the code how to behave on particular hardware platforms.
This isn’t something that you’ll want to change at runtime.

But when ports or environment variables might change according to
the context that they’re running in, you might prefer to define them
when you run the container. As with many things in containers (and
in software engineering in general!) there are several ways to skin a
cat, and you must choose which is best for your particular applica‐
tion. If you’ve worked through the examples, you should have a
helpful grip on both approaches.

And I’m afraid there is yet another way to define values like the
ports and environment variable post-build: Docker Compose. This

16 | How to Containerize Your Go Code

https://12factor.net/config

really comes into its own when you’re using multiple containers that
interact with one another, which we’ll cover in an upcoming lesson.

Recap
In this lesson, you’ve seen the following:

• How to build Go code into a container
• The basics of what to put in a Dockerfile
• How Go programmers can take advantage of building from

scratch rather than a Linux base container image
• How to pass environment variables to your code, either at image

build time or at runtime
• How to control port mappings between the container and the

host on which it’s running.

Recap | 17

About the Author
Liz Rice, cofounder of Microscaling Systems, has a wealth of soft‐
ware development, architecture management experience in technol‐
ogy sectors including VOD, music, VoIP and the charity sector.
When not building startups and writing code, she loves riding bikes
in places with better weather than her native London.

	Cover
	Microsoft
	Copyright
	Table of Contents
	Chapter 1. How to Containerize Your Go Code
	Introduction and Motivations
	Example Code
	Using Docker

	What Is a Container?
	Bundling Go Code into a Container Image
	Building a Container Image
	A Linux Executable
	Building the Container Image
	Running the Container
	Digging Deeper: What’s Inside the Container?
	Why Build from Scratch?
	Cleaning Up
	Summary
	Image Commands
	Container commands

	Environment Variables and Port Mappings
	Building env vars into the container image
	Overriding the env var
	Specifying the Port Mapping
	Back to the Dockerfile
	Summary

	Recap

	About the Author

