
1

SQL Server technical e-book series

SQL Server
performance:
faster querying
with SQL Server

01
Introduction: Faster data growth
demands faster access

02
Faster querying with SQL Server

03
Database performance

04
Query performance

05
Additional performance-improving
tools and features

06
Setting the standard for speed
and performance

ContentSQL Server
performance:
faster querying
with SQL Server

© 2018 Microsoft Corporation. All rights reserved. This
document is provided “as is.” Information and views
expressed in this document, including URL and other
internet website references, may change without notice.
You bear the risk of using it.

This document does not provide you with any legal rights
to any intellectual property in any Microsoft product.
You may copy and use this document for your internal,
reference purposes.

3

Who should read
this e-book?

This e-book is for database architects, administrators, and developers looking
to accelerate query processing capabilities to support their most demanding
data-driven applications. By reading this e-book, you’ll learn how to get the
most out of SQL Server, taking advantage of advanced built-in processing
capabilities including in-memory performance, security, analytics, and
flexibility. This e-book covers tools and features like columnstore indexes
and Adaptive Query Processing, with technical details on how to put these
capabilities into practice.

01

With data factoring in an increasing amount of interactions everywhere,
it’s important to not only keep up with the volume of data but harness the
power of it.

This need presents an opportunity for you to modernize your organization’s
applications and drive digital transformation with better built-in analytics. By
using the most advanced business intelligence capabilities, you can make the
most of the vast and varied data out there, accelerate your speed of doing
business through smarter decision-making and faster execution, and gain a
competitive advantage

Microsoft SQL Server can help you achieve this goal through the best and
fastest platform available for your data and applications. SQL Server offers
critical built-in capabilities, including:

▪ Industry-leading1 in-memory performance

▪ Trusted security

▪ Game-changing in-database advanced analytics

▪ Flexibility to run your complete data estate on any environment
with any data

Chapter 01 Introduction: Faster data growth demands faster access

How you handle data can be
a difference-maker for your
business.

1 Gartner has rated Microsoft as a leader, with the most complete vision and highest ability to execute of any operational database management system,

for three consecutive years. SQL Server Blog, Three years in a row—Microsoft is a leader in the ODBMS Magic Quadrant, November 3, 2017.

https://cloudblogs.microsoft.com/sqlserver/2017/11/03/three-years-in-a-row-microsoft-is-a-leader-in-the-odbms-magic-quadrant/

02

SQL Server combines higher speed with greater choice. By bringing the power
of SQL Server to Linux, Linux-based containers, and Windows, Microsoft enables
you to decide which development languages, data types, environments (on-
premises or cloud), and operating systems work best for your unique situation.

Chapter 01 Introduction: Faster data growth demands faster access

IDC estimates that the amount of the global datasphere subject to data
analysis will grow by a factor of

Source: IDC, Data Age 2025, April 2017

50 to
5.2 ZB
in 2025.

https://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf

03

SQL Server delivers
built-in capabilities and
features that accelerate
analytics performance
and query processing
to keep your database
application at peak speed.
SQL Server holds multiple top-performance benchmarks for transaction
processing with leading business applications:

Hewlett Packard Enterprise (HPE) announced a new world-record TPC-H
10TB benchmark1 result using SQL Server 2017 and Windows Server 2016,
demonstrating the leadership of SQL Server in price and performance.

 HPE also announced the first TPC-H 3TB result2 and exhibited the
power of SQL Server 2017 to handle analytic query workloads, including
data warehouses.

 SQL Server is a proven leader for online transaction processing (OLTP)
workloads. Lenovo recently announced a new world-record TPC-E benchmark
result3 using SQL Server 2017 and Windows Server 2016. This is now the top
TPC-E result in both performance and price/performance.

 SQL Server holds a world-record 1TB TPC-H benchmark4 result (non-clustered)
for SQL Server on Red Hat Enterprise Linux. ▪

Faster querying with SQL ServerChapter 02

1 10TB TPC-H non-clustered result as of November 9, 2017.
2 3TB TPC-H non-clustered result as of November 9, 2017.
3 TPC-E benchmark result as of November 9, 2017.
4 TPC-H benchmark result on RHEL as of April 2017.

http://www.tpc.org/tpch/results/tpch_result_detail.asp?id=117103101
http://www.tpc.org/tpch/results/tpch_result_detail.asp?id=117103102
http://www.tpc.org/tpce/results/tpce_result_detail.asp?id=117110101
https://rhelblog.redhat.com/2017/04/19/microsoft-red-hat-hpe/

04

Databases perform
both simple and
complex transactions.
Depending on the types and level of complexity involved in performing those
transactions, the amount of time it takes a database to return results can
increase significantly. When considering database optimization, it’s important
to know the types of transactions and the amount of throughput your database
will need to sustain to be considered responsive enough.

SQL Server has several features designed to increase transactional throughput.
In-memory data processing can save significant time with certain types of
transactions. Columnstore indexes leverage column-based data storage to
organize large amounts of analytics-ready information in a compressed format.
This makes lookups extremely fast compared to B-tree index searches done in
row-based data storage.

Broadly speaking, in-memory data processing technology is faster because it
saves disk-seek and disk-read times. In-memory data processing also eliminates
wait time due to lack of concurrency lockout, but without persistence it’s
vulnerable to the transient nature of RAM. That is, a sudden power failure can
result in data loss.

SQL Server has added functionality to build upon the best of in-memory data
processing technology while mitigating the risks. This helps you to safely get
more out of In-Memory OLTP, dramatically improving throughput.

Database performanceChapter 03

In-memory data

05

Certain types of transactions are ideal candidates for In-Memory OLTP.
Situations where transactions are short and plentiful will yield the most
performance gain (especially if processing a high percentage of INSERT
statements), including sales transaction recording, high-volume Internet of
Things (IoT) or remote sensor reports, or ad clicks, just to name a few.

Several features of SQL Server’s In-Memory OLTP can be combined to optimize
performance depending on the type of data you’re processing:

Memory-optimized tables. The key to In-Memory OLTP is the use of memory-
optimized tables—a special type of table data structure which is created
in memory and not on disk. Memory-optimized tables are said to take an
optimistic approach to concurrent transaction processing because they rely on
the fact that the chances of two UPDATE transactions affecting the same row
of data is very low. Therefore, a row isn’t locked before it’s updated. Instead,
the system performs some quick validation at the time of commit and flags any
conflict that may occur, saving precious milliseconds of processing time.

Non-durable tables. In SQL Server, memory-optimized tables are persistent by
default although they can be configured to be non-persistent or non-durable if
the risk of data loss is acceptable. They are used as temporary storage for query
results or for caching.

Memory-optimized table variables. This feature helps you with a variable that
is declared as an in-memory table. These variables store query results in such
a way that it’s easy to pass them to other statements or procedures, such as
natively compiled or interpreted stored procedures (the latter being used for
disk-based tables).

Natively compiled stored procedures. A stored procedure has been compiled
to native code and is able to access memory-optimized tables. Stored
procedures are compiled upon creation, which gives them an advantage over
interpreted stored procedures since error detection happens upon creation
rather than at execution time. Higher performance gains are realized the
more complex the logic and the more rows of data a natively compiled stored
procedure processes. Read more about best practices around the use of
natively compiled stored procedures.

Database performanceChapter 03

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/best-practices-for-calling-natively-compiled-stored-procedures?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/best-practices-for-calling-natively-compiled-stored-procedures?view=sql-server-2017

06

Natively compiled scalar user-defined functions. Also called UDFs, these
user-defined functions have been compiled to native code for faster execution
on memory-optimized tables. UDFs defined in this way are only able to be
executed on memory-optimized tables and not on traditional disk-based tables.

SQL Server improves the performance of In-Memory OLTP workloads by
removing many of the limitations on tables and stored procedures found
in earlier product versions. Features introduced in 2017 make it easier to
migrate your applications and take advantage of the benefits of In-Memory
OLTP. Additionally, memory-optimized tables now support even faster OLTP
workloads with better throughput as a result of parallelized operations.

The limitation of eight indexes for memory-optimized tables has been
eliminated. You can now create as many indexes on memory-optimized tables
as you can create on disk-based tables. Any disk-based table in your database
that you could not migrate previously due to this limitation can now be
memory-optimized.

 Transaction log redo of memory-optimized tables is now done in parallel.
This bolsters faster recovery times and significantly increases the sustained
throughput of Always On Availability Group configuration.

 Performance of Bw-Tree (non-clustered) index rebuild for MEMORY_
OPTIMIZED tables during database recovery has been significantly
optimized. This improvement substantially reduces database recovery time
when non-clustered indexes are used.

 sp_spaceused is now supported for memory-optimized tables. It displays
the number of rows, disk space reserved, and disk space used by a table,
indexed view, or Service Broker queue in the current database. Alternatively, it
displays the space reserved and used by the entire database.

sp_rename is now supported for memory-optimized tables and natively
compiled T-SQL modules.

Database performanceChapter 03

SQL Server
also offers
these benefits:

07

Memory-optimized filegroup files can now be stored on Azure Storage.
Backup/restore of memory-optimized files on Azure Storage is supported.

Memory-optimized tables now support computed columns. Query surface
area in native modules has been improved to include full support for JSON
functions. Additional native support for query constructs, such as CROSS
APPLY, CASE, and TOP (N) WITH TIES, is now available.

To enable an application to use In-Memory OLTP, you can create a memory-
optimized table:

 CREATE TABLE SupportEvent
(
 SupportEventId int NOT NULL
 PRIMARY KEY NONCLUSTERED,
 ...
) WITH (
 MEMORY_OPTIMIZED = ON,
 DURABILITY = SCHEMA_AND_DATA);

The MEMORY_OPTIMIZED = ON clause identifies a table as memory-optimized
and SCHEMA_AND_DATA, specifying that all changes to the table will be logged
and the table data is stored in memory. Every single memory-optimized table
must contain at least one index.

 For more in-depth information about memory-optimized tables, see
Memory-Optimized Tables.

Dive deeper:
In-Memory OLTP

Database performanceChapter 03

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/memory-optimized-tables?view=sql-server-2017

08

You can also create natively compiled stored procedures to access data in
memory-optimized tables. Here’s an example syntax:

CREATE PROCEDURE dbo.usp_add_kitchen @dept_id int, @kitchen_
count int NOT NULL
WITH EXECUTE AS OWNER, SCHEMABINDING, NATIVE_COMPILATION
AS
BEGIN ATOMIC WITH (
TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N’us_
english’)

 UPDATE dbo.Departments
 SET kitchen_count = ISNULL(kitchen_count, 0) +
@kitchen_count
 WHERE id = @dept_id
END;
GO

A procedure created without NATIVE_COMPILATION cannot be altered to a
natively compiled stored procedure.

 For a discussion of programmability in natively compiled stored
procedures, supported query surface area, and operators, see
Supported Features for Natively Compiled T-SQL Modules.

Database performanceChapter 03

https://docs.microsoft.com/sql/relational-databases/in-memory-oltp/supported-features-for-natively-compiled-t-sql-modules?view=sql-server-2017

09

A columnstore index is a technology for storing and querying large amounts
of data in a columnar format. This is one of the most powerful features of
SQL Server for high-speed analytic queries and large databases. Columnstore
indexes boost performance by compressing columnar data to reduce memory
and disk footprint, filtering scans automatically through rowgroup elimination,
and processing queries in batches. With SQL Server columnstore indexes, you
can enable operational analytics—the ability to run real-time analytics on a
transactional workload.

SQL Server offers several capabilities for columnstore indexes, including:

▪ Non-clustered columnstore index (NCCI) online rebuild.

▪ Large objects (LOBs) support for columnstore indexes.

▪ Computed columns for clustered column index (CCI).

▪ Query optimizer features, like Machine Learning Services.

Dive deeper:
Columnstore
indexes

Columnstore
indexes

Database performanceChapter 03

A columnstore index is either clustered or non-clustered. A clustered
columnstore index (CCI) is the physical storage for the entire table. Use a CCI to
store fact tables and large dimension tables for data warehousing workloads.
A non-clustered columnstore index (NCCI) is a secondary index created on
a rowstore table. Use an NCCI to perform analysis in real time on an OLTP
workload. A clustered columnstore index can have one or more non-clustered
B-tree indexes.

 To learn more about CCI and NCCI, go to Columnstore indexes – Overview.

Data stored as rows Data stored as columns

https://docs.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-2017

10

CCIs are best suited for analytics queries, since analytics queries tend to perform
operations on large ranges of values rather than looking up specific values.
When you create a table with the CREATE TABLE statement, you can designate
the table as a CCI by creating a CLUSTERED COLUMNSTORE INDEX option:

--Create the table
CREATE TABLE t_account (
 AccountKey int NOT NULL,
 AccountDescription nvarchar (50),
 AccountType nvarchar(50),
 UnitSold int
);
GO
--Store the table as a columnstore.
CREATE CLUSTERED COLUMNSTORE INDEX taccount_cci ON t_account;
GO

You can create non-clustered B-tree indexes as secondary indexes on a CCI. To
optimize table seeks in a data warehouse, you can create an NCCI designed to
run queries that perform best with these searches:

CREATE NONCLUSTERED COLUMNSTORE INDEX taccount_nc1 ON t_
account (AccountKey);

Dive deeper:
Columnstore
indexes for data
warehousing

Database performanceChapter 03

11

Hybrid transactional/analytical processing (HTAP) uses a columnstore index
on a rowstore table that you’re able to update. The columnstore index
keeps a copy of the data, so the OLTP and analytics workloads run against
isolated copies of the data. This enables real-time analytical processing over
transactional data workloads without reduced performance. For each table,
drop all B-tree indexes that are chiefly designed to accelerate existing analytics
on your OLTP workload. Replace them with a solitary columnstore index. See
the below example to create a non-clustered columnstore on the OLTP table
with a filtered condition:

CREATE TABLE t_account (
 accountkey int PRIMARY KEY,
 accountdescription nvarchar (50),
 accounttype nvarchar(50),
 unitsold int
);
--Create the columnstore index with a filtered condition
CREATE NONCLUSTERED COLUMNSTORE INDEX account_NCCI
ON t_account (accountkey, accountdescription, unitsold) ;

The columnstore index on an in-memory table enables you to use operational
analytics by integrating In-Memory OLTP and in-memory columnstore
technologies, delivering high performance for both these workloads. The
columnstore index on an in-memory table must include all columns. This
example creates a memory-optimized table with a columnstore index:

CREATE TABLE t_account (
 accountkey int NOT NULL PRIMARY KEY NONCLUSTERED,
 Accountdescription nvarchar (50),
 accounttype nvarchar(50),
 unitsold int,
 INDEX t_account_cci CLUSTERED COLUMNSTORE
)
 WITH (MEMORY_OPTIMIZED =
ON);
GO

Dive deeper:
Columnstore
for a hybrid
transactional/
analytical
processing
(HTAP)

Database performanceChapter 03

12

With this index creation, you can implement HTAP without making any
changes to your application. Analytics queries will run against the columnstore
index and OLTP operations will keep running against your OLTP B-tree indexes.

Columnstore indexes are an important component in keeping your queries
performant. To maintain performance, these indexes need to be rebuilt
periodically which—for very large indexes—can take time. For any online
business, taking an application down for an hour means losing real money
and possibly even worse. To keep your application up and running, SQL Server
supports online backups, consistency checks, and index rebuilds.

In SQL Server, you can pause an index build and resume it at any time, even
after a failure. You can rebuild indexes while they are still in use, and you can
pause and resume those rebuilds, picking up exactly where the rebuild left
off. You can enjoy the benefits of using less log space than the index rebuild
operations of previous releases. ▪

Non-clustered
columnstore
online rebuild

Database performanceChapter 03

13

Poorly written queries
can degrade application
performance and hinder
the availability of critical
business information.
They can also lead to inefficient use of resources like CPU, memory, and
network. Regressions in query execution plans can also greatly impact
performance. These can occur if there have been application changes, stale
database statistics, or inaccurate row count estimates. Even if your database
server runs on the most powerful hardware available, its performance can be
negatively affected by a handful of misbehaving queries. In fact, even one bad
query can cause serious performance issues for your database.

Query performance depends on many factors, one of which is the query plan.
When tuning and optimizing a poor query, a DBA usually starts by looking at
the execution plan of that query and evaluating it to determine the best and
most efficient plan based on data estimation. To help this process, SQL Server
provides query processing and performance features that change the way
query plans work:

Query Store improvements enable you to track wait statistics summary
information, helping to reduce the time spent troubleshooting.

Adaptive Query Processing (AQP) is a way of optimizing the SQL Server
execution plan by mitigating errors in the query plan and adapting the
execution plan based on run results.

Query performanceChapter 04

14

Query Store gathers telemetry on compilation-time and execution-time
statistics. It also captures query and plan history for your review. Data is
separated by time windows, so you can see database usage patterns and
understand when query plan changes happened on the server.

Wait statistics are another source of information that help you troubleshoot
performance issues in SQL Server. In the past, wait statistics were available only
at the instance level, which made it difficult to backtrack details to the actual
query. Query Store helps you track wait statistics more efficiently by providing
summary information. Wait statistics are tied to a query plan and taken over
time, just like runtime statistics. This provides more insight into workload
performance and bottlenecks, while preserving key Query Store advantages.

SQL Server Management Studio (SSMS) hosts a set of user interfaces designed
for configuring Query Store as well as for consuming collected data about your
workloads. In Object Explorer in SSMS, you can enable Query Store by selecting
the Operation Mode (Requested) box:

Query Store

Dive deeper:
Using SQL Server
Management
Studio or Transact-
SQL Syntax for
Query Store

Query performanceChapter 04

15

You can also use the ALTER DATABASE statement to implement the
Query Store. For example:

ALTER DATABASE AdventureWorks2012 SET QUERY_STORE = ON;

Once you’ve moved forward with either of these options, refresh the database
portion of the Object Explorer pane to add the Query Store section. You’ll be
able to see Query Store reports:

 For more information about how to monitor performance by using the
Query Store, see Microsoft documentation.

Query performanceChapter 04

https://docs.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-2017#About

16

During query processing and optimization, the cardinality estimation (CE)
process is responsible for approximating the number of rows processed at
each step in an execution plan. Inaccurate estimations can result in slow
query response time, unnecessary resource utilization (memory, CPU, IO), and
reduced throughput and concurrency.

To improve the CE process, SQL Server offers a feature family called Adaptive
Query Processing (AQP). AQP makes SQL Server significantly faster at
processing workloads by allowing the query processor to adjust query plan
choices based on runtime characteristics. AQP breaks the barrier between
query plan and actual execution. Optimization can be done while the query
is executing or even after execution is complete, which benefits subsequent
query executions. AQP offers three techniques for adapting to application
workload characteristics:

▪ Batch mode memory grant feedback.

▪ Batch mode adaptive joins.

▪ Interleaved execution for multistatement table-valued functions.

Query performanceChapter 04

Adaptive Query
Processing

Adaptive query
processing

Batch mode
memory grant

feedback

Batch mode
adaptive join

Interleaved
execution

17

For a query’s post-execution plan, SQL Server takes a cardinality estimate for
a given T-SQL batch and estimates the minimum memory grant needed for
execution as well as the ideal memory grant needed to hold all rows of the
batch in memory. If there are problems with the CE, performance suffers and
available memory is constrained. Excessive memory grants result in wasted
memory and reduced concurrency. Insufficient memory grants cause expensive
spills to disk.

With batch mode memory grant feedback, SQL Server recalculates the actual
memory required for a query and then updates the grant value for the cached
plan. When an identical query statement is executed, the query uses the
revised memory grant size. Performance is improved because there are fewer
spills to tempdb and, because memory grants to batches are more accurate,
additional memory can be provided to the batches that need it most.

For excessive grants, if the granted memory is more than two times the size
of the used memory, memory grant feedback will recalculate and update the
cached plan. Plans with memory grants under 1 MB will not be recalculated for
overages. For insufficiently sized memory grants that result in a spill to disk for
batch mode operators, memory grant feedback will trigger a recalculation. Spill
events are reported to memory grant feedback. This event returns the Node ID
from the plan and the spilled data size of that node.

SQL Server typically chooses among three types of physical join operators:
nested loop joins, merge joins, and hash joins. Each type of join has strengths
and weaknesses, depending on the characteristics of the data and query
patterns. Which algorithm is best to use in each query depends on the
cardinality estimates of the join inputs. Inaccurate input CEs can result in the
selection of an inappropriate join algorithm.

With the batch mode adaptive joins feature, SQL Server enables you to defer
the selection of a hash join or nested loop join method until after the first
input has been scanned. The adaptive join operator defines a threshold that is
used to decide when to switch to a nested loop plan. Consequenlty, a plan can
dynamically switch to a better join strategy during execution.

Query performanceChapter 04

Batch mode
memory grant
feedback

Batch mode
adaptive joins

18Query performanceChapter 04

Multistatement table-valued functions (MSTVFs) are popular among
developers although their initial execution can cause performance slowdowns.
With the help of AQP, SQL Server resolves this issue through the interleaved
execution for MSTVFs feature. This feature changes the unidirectional
boundary between the optimization and execution phases for a single-query
execution, and it enables plans to adapt based on the revised cardinality
estimates. With interleaved execution, the actual row counts from the MSTVF
are used to make plan optimizations downstream from the MSTVF references.
The result is a better-informed plan based on actual workload characteristics
and, ultimately, better query performance.

When an MSTVF is encountered, the query optimizer will take the
following actions:

▪ Pause optimization.

▪ Execute the MSTVF subtree to get an accurate CE.

▪ Continue processing subsequent operations with an accurate set
of assumptions.

Based on the execution results (estimated number of rows), the query optimizer
can consider a better plan and execute the query with the modified plan.

In general, the higher the skew between the estimated and actual number of
rows—coupled with the number of downstream plan operations—the greater
the performance impact. Interleaved execution benefits queries where both
of the following are true:

▪ There is a large skew between the estimated and actual number of rows for
the intermediate result set (in this case, the MSTVF).

▪ The overall query is sensitive to a change in the size of the intermediate
result. This typically happens when there is a complex tree above the subtree
in the query plan. A simple “SELECT *” from an MSTVF will not benefit from
interleaved execution.

Interleaved
execution for
multistatement
table-valued
functions

19

You can make workloads automatically eligible for AQP by enabling
compatibility level 140 for the database. Here’s an example of how you can set
this using T-SQL:

ALTER DATABASE [YourDatabaseName]
SET COMPATIBILITY_LEVEL = 140;

 For more information about how to use these features, see
Adaptive query processing in SQL databases. ▪

Query performanceChapter 04

Dive deeper:
Enabling AQP

https://docs.microsoft.com/sql/relational-databases/performance/adaptive-query-processing?view=sql-server-2017

20Additional performance-improving tools and featuresChapter 05

There are also other tools
and features available
and supported by SQL
Server for monitoring
and optimizing
performance, including
feature configuration
options and monitoring
and tuning features.
SQL Server offers various configuration options for disk, server, table, and
query at the database engine level for further improving the SQL Server
performance.

Disk configuration. You can set redundant array of independent disks (RAID)
levels 0, 1, and 5 with SQL Server. Configure RAID level 0 for disk stripping, 1 for
disk mirroring, and 5 striping with parity to be used with SQL Server.

Tempdb configuration. For optimizing tempdb performance, you can use
options such as database instant file initialization, autogrow, and disk striping
to keep tempdb in your local drive instead of the shared network drive. For
further details, see Optimizing tempdb performance in SQL Server.

Feature
configuration
options for
performance

https://docs.microsoft.com/sql/relational-databases/databases/tempdb-database?view=sql-server-2017#optimizing-tempdb-performance-in-sql-server

21Additional performance-improving tools and featuresChapter 05

Server configuration. You can configure settings for processor, memory, index,
backup, and query to enhance the server performance with SQL Server. These
settings include options for a maximum degree of parallelism like MAXDOP,
max server memory, optimize for ad hoc workloads, and nested triggers. For
further details, see Configuration Options for Performance.

Database configuration. Set row and page compression using the data
compression function for rowstore and columnstore tables and indexes to
optimize the database performance. You can also change the compatibility
level of a database based on your requirements.

Table configuration. You can use partitioned tables and indexes for improving
table performance.

Query performance options. For enhancing query level performance, you can
use indexes, partitions, stored procedures, UDFs, and statistics. Use previously
discussed features like memory-optimized tables and natively compiled
stored procedures to improve In-Memory OLTP performance. See the Query
Performance Options for further details.

Tools like Query Store, execution plans, live query statistics, and Database
Engine Tuning Advisor can help you monitor SQL Server events. You can also
use various T-SQL commands like sp_trace_setfilter to tracks engine process
events or DBCC TRACEON, a command to enable trace flags. Additionally, you
can also establish a performance baseline using sp_configure to determine
whether your SQL Server system is performing optimally or not. For more
information, see Performance Monitoring and Tuning Tools.

Resource Governor is a tool in SQL Server that helps you manage and specify
limits on the system resource consumptions. You can simply define the resource
limit on CPU, physical I/O, and memory that incoming application requests
can use. Using Resource Governor, you can continually observe resource usage
patterns and adjust the system settings accordingly for maximize effectiveness.
To dive deeper into its usage and how it works, see Resource Governor
documentation. ▪

Monitoring and
tuning features for
performance

Resource Governor

https://docs.microsoft.com/sql/relational-databases/performance/performance-center-for-sql-server-database-engine-and-azure-sql-database?view=sql-server-2017#configuration-options-for-performance
https://docs.microsoft.com/sql/relational-databases/performance/performance-center-for-sql-server-database-engine-and-azure-sql-database?view=sql-server-2017#query-performance-options
https://docs.microsoft.com/sql/relational-databases/performance/performance-center-for-sql-server-database-engine-and-azure-sql-database?view=sql-server-2017#query-performance-options
https://docs.microsoft.com/sql/relational-databases/performance/performance-monitoring-and-tuning-tools?view=sql-server-2017
https://docs.microsoft.com/sql/relational-databases/resource-governor/resource-governor?view=sql-server-2017

22Chapter 06 Setting the standard for speed and performance

SQL Server 2017 delivers faster
processing capabilities to support
your most demanding data-driven
applications. It includes a unique
set of features built on industry-
leading, advanced performance
capabilities.

In-Memory OLTP provides faster online transaction processing workloads
and better throughput. Columnstore indexes improve database performance
and boost high-speed analytics. Plus, features like Adaptive Query Processing
enable DBAs to further optimize their query processing capabilities. SQL Server
2017 provides the speed, features, and scalability that organizations need to
keep their work up and running at the pace their users demand. ▪

See how to run
SQL Server on your
favorite platform.

Learn about the
latest features in
SQL Server.

View SQL industry
benchmarks and
performance.

Download
SQL Server.

https://www.microsoft.com/sql-server/sql-server-2017-editions
https://www.microsoft.com/sql-server/sql-server-2017-editions
https://www.microsoft.com/sql-server/sql-server-2017-editions
https://docs.microsoft.com/sql/sql-server/what-s-new-in-sql-server-2017?view=sql-server-2017
https://docs.microsoft.com/sql/sql-server/what-s-new-in-sql-server-2017?view=sql-server-2017
https://docs.microsoft.com/sql/sql-server/what-s-new-in-sql-server-2017?view=sql-server-2017
https://www.microsoft.com/sql-server/sql-server-benchmarks-industry
https://www.microsoft.com/sql-server/sql-server-benchmarks-industry
https://www.microsoft.com/sql-server/sql-server-benchmarks-industry
https://www.microsoft.com/sql-server/sql-server-downloads
https://www.microsoft.com/sql-server/sql-server-downloads

