

Anand Raman and Wee Hyong Tok

A Developer’s Guide to Building
AI Applications

Create Your First Intelligent Bot
with Microsoft AI

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-03784-2

[LSI]

A Developer’s Guide to Building AI Applications
by Anand Raman and Wee Hyong Tok

Copyright © 2018 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐
tions are also available for most titles (http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Nicole Tache
Production Editor: Nicholas Adams
Copyeditor: Octal Publishing, Inc.

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2018: First Edition

Revision History for the First Edition
2018-05-24: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. A Developer’s Guide to Building AI
Applications, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsi‐
bility for errors or omissions, including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Microsoft. See our statement of editorial
independence.

http://oreilly.com/safari
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

A Developer’s Guide to Building AI Applications. 1
Introduction 1
The Intersection of Cloud, Data, and AI 4
The Microsoft AI Platform 9
Developing an Intelligent Chatbot 11
Adding “Plug and Play” Intelligence to Your Bot 33
Building an Enterprise App to Gain Bot Insights: The Conference Buddy

Dashboard 36
Paving the Road Ahead 43

iii

1 The Future Computed—Artificial Intelligence and its role in society—Microsoft

A Developer’s Guide to Building
AI Applications

Introduction
Artificial Intelligence is rapidly becoming a mainstream technology that is help‐
ing transform and empower us in unexpected ways. Let us take a trip to remote
Nepal to see a fascinating example. Like the vast majority of Nepalese, Melisha
Ghimere came from a remote village from a family of subsistence farmers who
raised cows, goats, and water buffalos. Seven years ago, she watched her relatively
wealthy uncle and aunt lose a lot of their herd to an outbreak of anthrax; they
were never to recover their economic footing. Melisha went on to college think‐
ing about the plight of her family. In college, she worked to develop a predictive
early warning solution to help farmers. With a team of four students, they
researched livestock farming, veterinary practices, and spoke to farmers. They
built a prototype for a monitoring device that tracks temperature, sleep patterns,
stress levels, motion, and the activity of farm animals. Melisha’s AI system pre‐
dicts the likely health of each animal based on often subtle changes in these
observations. Farmers are able to track their animals, receive alerts, and actiona‐
ble recommendations. Although her project is still in its infancy, the field tests
have shown the solution was about 95% accurate in predicting risks to an ani‐
mal’s health. Melisha and her team were able to help a family prevent a deadly
outbreak of an anthrax infection by identifying a diseased cow, before symptoms
were evident to the farmer. Melisha’s team was a regional finalist in Microsoft’s
Imagine Cup competition in 2016.1

Let me give you another example much closer to home, the power of AI in trans‐
forming the retail experience. Lowes Innovation Labs has now created a unique
prototype shopping experience for home remodeling. For example, a customer

1

http://bit.ly/2upC0ie

2 http://www.lowesinnovationlabs.com/hololens

can now walk in and share her dream kitchen photos with a design specialist.
Using an AI-powered application, the design specialist gains deep insight into the
customer’s style and preference. The application generates a match from the
Lowe’s dream kitchen collection, and the design of the kitchen is then shown in
very realistic holographic mixed-reality through a Hololens.2 The customer can
now visualize, explore, and change the design to his taste in the mixed reality
environment in real time. Applications like these are vanguards of the revolution
in retail experiences that AI will bring for consumers.

Healthcare is another field that is at the cusp of a revolution. With the power of
AI and a variety of data sources from genomics, electronic medical records, med‐
ical literature, and population data, scientists are now able to predict health
emergencies, diagnose better, and optimize care. A unique example in this area
comes from Cochrane, a highly reputed nonprofit organization dedicated to
gathering and summarizing the best evidence from research to help doctors
make informed choices about treatment. Cochrane conducts systematic reviews,
which digests and analyzes explosively growing medical literature, and reduces it
into fairly short and manageable pieces of work to give doctors the best possible
guidance on the effects of healthcare interventions. For example, a recent system‐
atic review of medical studies looked at whether steroids can help with the matu‐
ration of premature babies’ lungs. The review showed conclusively that steroids
can help save the babies’ lives. This intervention has helped hundreds of thou‐
sands of premature babies. However, such reviews are very labor intensive and
can take two to three years to complete. Cochrane’s Project Transform was born
out of the need to make systematic reviews more efficient, give more timely and
relevant guidance to doctors, and therefore help save more lives. Project Trans‐
form uses AI to manipulate and analyze the literature and data very efficiently
and therefore allow researchers to understand the data and interpret the findings.
It creates a perfect partnership between human and machine, where a significant
amount of the heavy overhead of systematic reviews is reduced, and the human
analysis skills can be directed where they are most needed for timeliness and
quality.

There’s no field that will be left untouched by the transformational power of AI. I
can point you to fields as diverse as astronomy where AI has accelerated the pace
of new discoveries, and the area of conservation where ecologists and conserva‐
tionists are working with AI-powered tools to help track, study, and protect elu‐
sive and endangered animals.

2 | A Developer’s Guide to Building AI Applications

http://www.lowesinnovationlabs.com/hololens
http://www.cochrane.org/
http://bit.ly/2E27J8V

A lot of times we become bogged down in the discussions of the appro‐
priate algorithm or tools, but the real power of AI resides in the ideas
and questions that precede it.

It’s the conservationist pondering on how to create sustainable habitats, the doc‐
tor wondering how to better serve their patient, the astronomer’s and citizen sci‐
entist’s curiosity that expands our collective consciousness to the outer limits of
the universe. AI has the potential to empower the noblest of human causes, and
we are just at the beginning. The field is still nascent, and yet these breakthroughs
highlight the explosive power of AI in reshaping our daily experiences, how we
do business, and how we live our lives.

Five decades ago, the early inventors in AI could only dream of what most con‐
sumers take for granted today. From voice-powered assistants like Cortana, Siri,
or Alexa, to smartphones and self-driving cars, we seem to be living in “sci-fi”
pages. What do the next two decades hold for us? Five decades? At Microsoft, we
have made it our mission to advance AI innovations by democratizing AI tools in
the same way that we democratized the power of computing in the mainframe
era by envisioning a personal computer in every home, school, and workplace.

As educator and computing pioneer Alan Kay said, “The best way to predict the
future is to create it.” In the same spirit, we are writing this book to give develop‐
ers a start on creating the future with AI. In this book, we will show you how to
create your first AI application in the cloud, and in the process learn about the
wealth of AI resources and capabilities that are now rapidly becoming available
to programmers. The application we create will be an AI-infused Bot, a “Confer‐
ence Buddy,” that helps create a novel Question and Answer experience for the
attendees and speakers participating in a conference. As we build this Bot, you
will get a glimpse into how AI can help understand conversations, perceive vast
amounts of information, and respond intelligently. In the process, you will also
get a glimpse into the landscape of AI tools and emerging developments in the
field.

We selected a chatbot as our example because it is a relatively easy entry point
into AI, and in the process we highlight resources and links to help you dig
deeper. Chatbots are also ubiquitous, with interesting implementations, and
transforming the way in which we interact with computers. We also give you a
wider lens on the landscape of AI tools and a glimpse into exciting new develop‐
ments in the field.

Here’s a roadmap to the contents of this book:

Introduction | 3

“The Intersection of Cloud, Data, and AI”
In the rest of this section, we will introduce AI and the powerful intersection
of data, cloud, and AI tools that is creating a paradigm shift, helping enable
systems of intelligence.

“The Microsoft AI Platform”
Here, we explore the Microsoft AI platform and point out the tools, infra‐
structure, and services that are available for developing AI applications.

“Developing an Intelligent Chatbot”
This section presents a discussion of chatbots, conversational AI, and high‐
lights some chatbot implementations. How do you create an intelligent chat‐
bot for the enterprise? We provide a high-level architecture using the
Conference Buddy bot example, including code samples; discuss design con‐
siderations and technologies involved; and take a deep dive into the abstrac‐
tion layer of the bot, which we call the Bot Brain.

“Adding “Plug and Play” Intelligence to Your Bot”
This section explores how you easily give the bot new skills and capabilities
such as vision, translation, speech, and other custom AI abilities as well as
how you develop the Bot Brain’s intelligence.

“Building an Enterprise App to Gain Bot Insights: The Conference Buddy Dash‐
board”

This section highlights the Conference Buddy dashboard, which allows the
conference speaker and attendees to see the attendees’ questions and answer
them in real-time. We also discuss how to instrument the Bot to get metrics
and application insights.

“Paving the Road Ahead”
In the final section, we consider an exciting development in the AI world
with the release of Open Neural Network Exchange (ONNX) and also
Microsoft’s commitment to the six ethical principles—fairness, reliability and
safety, privacy and security, inclusivity, transparency, and accountability—to
guide the cross-disciplinary development and use of AI.

The Intersection of Cloud, Data, and AI
We define AI as a set of technologies that enable computers to assist and solve
problems in ways that are similar to humans by perceiving, learning, and reason‐
ing. We are enabling computers to learn from vast amounts of data, and interact
more naturally and responsively with the world, rather than following pre-

4 | A Developer’s Guide to Building AI Applications

3 Time magazine: Why you shouldn’t be afraid of AI
4 The Future Computed—Artificial Intelligence and its role in society—Microsoft

programmed routines.3 Technologies are being developed to teach computers to
“see,” “hear,” “understand,” and “reason.”4 The key groups of capabilities include:

Computer vision
This is the ability of computers to “see” by recognizing objects and their rela‐
tionships in a picture or video.

Speech recognition and synthesis
This is the ability of computers to “listen” by understanding the words that
people say and to transcribe them into text, and also to read text aloud in a
natural voice.

Language understanding
The ability of computers to “comprehend” the meaning of words and
respond, considering the many nuances and complexities of language (such
as slang and idiomatic expressions). When computers can effectively partici‐
pate in a dialog with humans, we call it “conversational AI.”

Knowledge
The ability of a computer to “reason” by representing and understanding the
relationship between people, things, places, and events.

What do these capabilities mean in the context of enterprise applications? The
power of AI is powering applications that reason by unlocking the power of all
data collected over time, across repositories and massive datasets through
machine learning. These AI-powered systems understand and create meaning in
unstructured data such as email, chats, and handwritten notes, all of which we
previously could not process. And, more important, the systems are interacting
with customers and engaging them in different channels and in ways that are
hyperpersonalized.

In the same vein, businesses are using AI-powered applications to digitally trans‐
form every aspect of their organizations including: transforming their products
through insights from customer data, optimizing business operations by predict‐
ing anomalies and improving efficiencies, empowering their employees through
intelligent tools, and engaging their customers through conversational agents
that deliver more customized experiences.

The following are examples of the questions that power the engines running AI
applications:

Classifications
Which category does it belong to?

The Intersection of Cloud, Data, and AI | 5

https://ti.me/2GEkknZ
http://bit.ly/2upC0ie

5 Time magazine: Why you shouldn’t be afraid of AI

Regression
How much? How many?

Anomaly
Is it weird?

Clustering
How is it organized?

So how do you begin to design AI-powered solutions that take advantage of all
the aforementioned capabilities? We design AI solutions to complement and
unlock human potential and creative pursuits. There are significant implications
of what it means to design technology for humans, and this includes considering
ethical implications; understanding the context of how people work, play, and
live; and creating tailored solutions that adapt over time.

One of the most fascinating areas of research is bridging emotional and cognitive
intelligence to create conversational AI systems that model human language and
have insight into the logical and unpredictable ways human interact.

According to Lili Cheng, corporate vice president of Microsoft AI and Research,
“This likely means AI needs to recognize when people are more effective on their
own—when to get out of the way, when not to help, when not to record, when
not to interrupt or distract.”5

The time for AI is now, given the proliferation of data, the limitless availability of
computing powers on the cloud, and the rise of powerful algorithms that are
powering the future.

Modern AI: Intersection of Data, Cloud Computing, and AI
Although AI research has been ongoing for decades, the past few years have seen
a leap in practical innovations, catalyzed by vast amounts of digital data, online
services, and enormous computing power. As a result, technologies such as
natural-language understanding, sentiment analysis, speech recognition, image
understanding, and machine learning have become accurate enough to power
applications across a broad range of industries.

Let’s examine the three important developments that are helping create modern
AI: data and the digital transformation, cloud computing, and AI algorithms and
tools.

6 | A Developer’s Guide to Building AI Applications

https://ti.me/2GEkknZ

Data and the digital transformation
At the center of AI is data, and the increasing digitization of our age is resulting
in the proliferation of what is known as big data. Out of approximately 7.4 billion
people on Earth, more than 4 billion own mobile devices and 3.8 billion are con‐
nected to the internet, and these numbers are projected to keep growing. The
vast majority of new information in the world is now generated and consumed
online, and an increasingly large fraction of the economy is migrating to online
services, from shopping to banking, entertainment, media, and communications.
As our lives have become increasingly digitized and sensors (microphones, cam‐
eras, location, and other sensors) have become cheap and ubiquitous, more data
than ever before is available from which computers can learn and reason. At the
same time, as we engage in online interactions and transactions digitally, new
response and feedback data is generated that allows AI algorithms to adapt and
optimize interactions.

The staggering amount and growth rate of data has led to significant innovation
in how we efficiently store, manage, and mine the data for flexible, real-time
analysis. Most such data flows to public or private clouds over the internet. “Big
Data” systems help to handle the heterogeneous nature of such data, and support
many analysis methods, such as statistical analysis, machine learning, data min‐
ing, and deep learning.

Such systems are at the heart of what makes it possible for computers to “see,”
“hear,” and “reason,” and to discern patterns often undetectable to human eyes.

Cloud computing
The internet, and the digital transformation of the world in turn, helped catalyze
cloud computing. Processing the data and delivering large-scale online services
requires massive computing power, reliable networks, storage, and data process‐
ing. The cloud provides a powerful foundation and platform to handle these
challenges. It allows you to stream data from connected devices, offers massive
data storage capacity and elastic, scalable computing power to integrate, analyze,
and learn from the data.

You can also get the largest servers, latest GPUs, and latest cutting-edge hardware
like Field Programmable Gate Arrays (FGPAs) to accelerate demanding compu‐
tations without the exorbitant overhead cost of building and provisioning data
centers and server farms. Enormous connectivity allows every type of device—
what we know as the Internet of Things (IoT)—to bring massive amounts of data
into the cloud on a real-time basis for analysis and AI at scale. Furthermore, the
cloud provides the necessary infrastructure and tools to offer enterprise-grade
security, availability, compliance, and manageability for the applications and
services deployed on the cloud.

The Intersection of Cloud, Data, and AI | 7

6 In The Structure of Scientific Revolutions (1962, 2nd ed. 1970)

AI algorithms and tools
The explosion of use cases for AI driven by online services and the digital trans‐
formation in turn catalyzed enormous progress in AI algorithms. One of the
most profound innovations in recent years has been deep learning. This techni‐
que, inspired by neural networks in the brain, allows computers to learn deep
concepts, relationships, and representations from vast amounts of data (such as
images, video, and text), and perform tasks such as object and speech recognition
with accuracy comparable to humans. Today, open source tools such as the Cog‐
nitive Toolkit, PyTorch, and Tensorflow make deep learning innovations accessi‐
ble to a wide audience. And all the major cloud vendors now have services that
substantially simplify AI development to empower software engineers.

Modern AI lives at the intersection of these three powerful trends: digital data
from which AI systems learn, cloud-hosted services that enable AI-powered
interactions, and continuing innovations in algorithms that make the AI capabili‐
ties more powerful, while enabling novel applications and use cases.

Systems of Intelligence: A Paradigm Shift
In an insightful article, Jerry Chen, from Greylock Partners, explores the idea of
systems of intelligence, which are powered by AI and are meant to recombine
multiple datasets, business processes, and workflows to create a new context. An
example is an application that combines web analytics with customer data and
social data to predict end-user behavior, churn, or serve more timely content.
The stories from the beginning of this chapter are examples of how such systems
were created to generate new insights and value across various industries (farm‐
ing, retail, healthcare, etc.)

The rise of systems of intelligence is one example of how the combination of data,
cloud computing, and AI is ushering us into a world of pervasive online systems
of intelligence. Whether it be ride-sharing services, online retail, social networks,
media and entertainment, banking, investments, transportation, manufacturing,
healthcare, and government, such systems of intelligence will mediate, manage,
and optimize all interactions and exchanges. The extent of this paradigm shift is
beyond the comprehension of most of us. Recall the prescient words of the
famous historian of science, Thomas Kuhn:

Led by a new paradigm, scientists adopt new instruments and look in new places.
Even more important, during revolutions scientists see new and different things
when looking with familiar instruments in places they have looked before. It is
rather as if the professional community had been suddenly transported to another
planet where familiar objects are seen in a different light and are joined by unfa‐
miliar ones as well. (Kuhn, 1962)6

8 | A Developer’s Guide to Building AI Applications

http://bit.ly/2E5YvIQ

In very much the same way, engineers, entrepreneurs, and business leaders,
empowered with systems of intelligence, are seeing familiar problems in a differ‐
ent light and discovering entirely new economic opportunities.

It is also useful to look at the transformation of enterprise information technol‐
ogy over the last few decades:

Client-Server Revolution → Systems of records
It was the client-server revolution that first enabled broad use of information
technology to manage business. Organizations first built systems of records:
Customer Relationship Management (CRM) systems; Human Capital Man‐
agement (HCM) systems for HR; and Enterprise Resource Planning (ERP)
systems for financials and key assets.

Internet Revolution → System of engagement
The rise of the internet, mobile, and chat allowed us to create systems of
engagement that interfaced between the systems of records and interacted
directly with customers and suppliers.

AI Revolution → System of intelligence
What is emerging now are systems of intelligence that integrate data across
all systems of record, connect directly to systems of engagement, and build
systems that understand and reason with the data. These systems can drive
workflows and management processes, optimize operations, and drive intel‐
ligent interactions with customers, employees, suppliers, and stakeholders.

The IT industry has moved on from figuring out the basic questions underpin‐
ning big data and AI infrastructure, and it is now ushering the rise of machine
learning and AI platforms, such as the Microsoft AI platform, as an application
layer. This movement will inspire new business models based on big data/AI to
emerge, in the same way that “web-enabled” businesses arose, and it will trans‐
form the consumer and business experience in ways that we can only get a
glimpse of now. In the next section, we explore the Microsoft AI platform and
highlight the tools and resources available for AI developers.

The Microsoft AI Platform
The Microsoft AI Platform aims to bring AI to every developer, and to empower
developers to innovate and accelerate with a variety of services, infrastructure,
and tools. From pre-built AI (that requires little to no training) to custom AI, the
open Microsoft AI Platform enables developers to use various deep learning and
machine learning frameworks and tools.

The Microsoft AI Platform | 9

Figure 1-1. The Microsoft AI platform (figure courtesy of Microsoft)

The platform consists of the following services (illustrated in Figure 1-1):

Custom AI
Azure Machine Learning enables you to develop machine learning and deep
learning models, train them in the cloud, and operationalize them. A variety
of data and compute services are available in Azure to store and process your
data.

Azure Machine Learning also provides an experimentation service, which
allows you to start rapid prototyping on the desktop, and scale this to run on
deep learning virtual machines, Spark clusters, and Azure Batch AI services.
Additionally, Azure Machine Learning allows you to manage model perfor‐
mance and life cycle, and to collaborate and share solutions using Git.
Docker containers enable you to deploy models into production faster in the
cloud, on-premises, or to intelligent edge devices.

Pre-Built AI
You can consume high-level “finished” services that accelerate development
of intelligent applications, with just a few lines of code. These services are
customized to an organization’s availability, security, and compliance
requirements. Cognitive Services provides pre-built AI, via a set of APIs,
SDKs, and services. This enables developers to infuse AI into applications,
websites, bots, and more.

Bot Framework
Provides tools to accelerate development for conversational AI. Integrates
seamlessly with Cortana, Office 365, Slack, Facebook Messenger, and more.
The Bot Framework is a platform for building, connecting, testing, and
deploying powerful and intelligent bots. With support for .NET, Node.js, and

10 | A Developer’s Guide to Building AI Applications

REST, you can get the Bot Builder SDK and quickly start building bots with
the Bot Framework. In addition, you can take advantage of Microsoft Cogni‐
tive Services to add smart features like natural language understanding,
image recognition, speech, and more.

Among the coding and management tools in the Microsoft AI Platform is Visual
Studio Tools for AI, which enable you to build, debug, test, and deploy AI with
Visual Studio Code on Windows and Mac. In addition, you can leverage various
tools such as Jupyter Notebooks, PyCharm, and more.

The Microsoft AI Platform also integrates with various machine learning and
deep learning frameworks, including TensorFlow, Caffe2, Microsoft Cognitive
toolkit (CNTK), Scikit-learn, MXNet, Keras, and Chainer.

To help you get started, you can leverage the resources that are available in the
Azure AI Gallery, which provides end-to-end solution templates, reference archi‐
tectural diagrams, and sample code.

In the next section, we explore how you can develop your next intelligent appli‐
cation using the Microsoft AI Platform. As an example, we walk through devel‐
oping an intelligent chatbot and include discussions on conversational AI/
chatbots, some interesting user stories, design considerations, and how to
develop the chatbot’s intelligence.

Developing an Intelligent Chatbot
The recent explosion and popularity of chatbots underscores our essential nature
as social beings. Instead of filling out forms, clicking through screens, and find‐
ing our way around difficult-to-navigate websites, brands have been making a
variety of services available through the convenience of a dialog interface using
speech or text. Think of bots as applications that you can talk to. Chatbots inter‐
act with you with the ease of a conversation and help answer your questions or
carry out tasks like securing your reservation, ordering food, or purchasing an
item. When designed correctly, they can even fool you into thinking you are
chatting with a human.

Some examples of chatbots in retail are the UPS bot, launched by the parcel
delivery service giant, which allows customers to get the information they need
about their packages, shipment, rates, and UPS locations. Macy’s bot connects
customers to information about orders, merchandise, common queries, and even
takes actions like applying coupons and discounting items in shopping bags. Dix‐
on’s Carphone, a major European electronics and telecommunication retailer and
service provider, wanted to bridge the gap between its customers’ online research
with its in-store experience. The company introduced a chatbot called Cami to
help streamline the customer’s experience by giving store employees access to
what the customers were looking for online and directing them to the products

Developing an Intelligent Chatbot | 11

https://gallery.azure.ai/solutions

7 Building Bots-Chatbots in the Retail Industry
8 Navigation technology company uses chatbots to help tourists get around Japan
9 For Sympathetic ear, more Chinese turn to a smartphone program

or recommend new ones within the store. In the retail industry alone, we are see‐
ing chatbots augmenting existing staff capabilities, reducing cost and time associ‐
ated with support, and transforming the overall customer experience.7

There are novel applications like those by Japanese navigation technology com‐
pany, NAVTIME Japan, which introduced a personal assistant chatbot aimed at
helping tourists plan their trips in real time as they travel around Japan. The
chatbot answers questions like, “Where can I get some dinner?” or, “Where can I
buy a souvenir?” It then provides geolocation services to let the user know
whether they are close to a place that they wanted to visit. Visiting a country
where you don’t speak the language no longer needs to be an overwhelming
experience.8

Companies are using “conversation-as-a-platform”—that is, bots that understand
human language or use language as the primary interface—to help with internal
operations, as well. From HR virtual assistants that field routine employee ques‐
tions and help with recruiting efforts in answering questions and routing
resumes, to productivity bots like meeting and digital assistants. Manufacturers
are using bots to connect IoT to support staff, so that the staff can keep an eye on
anomalies and receive alerts for predictive maintenance.

After more than a decade of researching the nuances of human language and
technologies to facilitate AI–human interaction, Microsoft released Xiaoice, a
Chinese celebrity chatbot with millions of followers. Part of her popularity stems
from the way she exhibits high emotional quotient (EQ) by remembering parts of
a conversation and following up in later conversations. Young Chinese men and
women turn to Xiaoice to talk about their issues, heartbreaks, and daily stresses;
some were even quoted to say “I love you” to her.9 Xiaoice’s popularity and talent
knows no bounds: she has published a book of poetry, helped Chinese people
write more than 200 million poems, and is currently hosting a TV morning news
program that has more than 800 million viewers.

Even though digital assistants like Cortana, Siri, and Alexa have long exhibited a
high IQ in their task-based functions, Xiaoice illustrates the potential of combin‐
ing the smarts of IQ with the empathy of EQ. Xiaoice, has been joined by Rinna
in Japan, who is equally popular and now powers Nintendo’s Pokemon games,
and Zo in the United States, who has engaged users in rap battles.

There is still a lot of work, research, and opportunities to uncover in the area of
raising the EQ of computer systems for translating the nuance of human lan‐
guage with its subtle changes in tone and meaning at any given context.

12 | A Developer’s Guide to Building AI Applications

http://bit.ly/2GgreR4
http://bit.ly/2GEoex9
https://nyti.ms/2pM5EJL

Microsoft’s ambitious vision extends beyond these chatbots to creating Conversa‐
tional AI as a Platform, which puts natural language at the heart of computing.
These systems will be imbued with AI-driven senses to create a seamless relation‐
ship between man and machine.

Evolution of Natural-Language Processing and Bots
Let’s take a step back and discuss natural-language processing (NLP) and how,
without the immense progress in the areas of NLP or Natural-Language Under‐
standing (NLU) there would be very limited bot capabilities to speak of. Human
language is often messy, imprecise, and vague with no explicit references to most
parts of the speech. Until relatively recently, processing and analyzing natural
language has been really challenging for computers, in spite of the sustained
attempts of computer scientists since the 1950s to solve the problem of process‐
ing and analyzing textual components, sentiments, parts of speech and the vari‐
ous entities that make up speech. The recent advances in machine learning and
the availability of vast amounts of digital text and conversational data through
webchats, messaging systems, and services such as Twitter have helped us make
immense progress in NLP.

NLP is essentially the ability to take a body of human-generated text and render
it into machine readable language. NLP analyzes and extracts key metadata from
text, including the following:

Entities
NLP detects nouns, including people, places, and things.

Relations
It identifies how the entities are related.

Concepts
NLP extracts general concepts from the body of text that do not explicitly
appear. For instance, the word “Excel” might return concepts like “Produc‐
tivity Tools” and “Numbers,” even if these terms do not appear in the text.
This is a powerful tool for making connections that might not seem obvious
at first glance.

Sentiment
This scores the level of positivity or negativity in the text. This is useful, for
example, to gauge sentiment related to a product or service. Or, in a cus‐
tomer support context, when to route a chat to a human upon detecting neg‐
ativity.

Emotions
This is sentiment analysis at a finer granularity; it classifies not just “positive”
and “negative,” but “anger,” “sadness,” and “joy.”

Developing an Intelligent Chatbot | 13

Keywords
NLP extracts keywords and phrases to use as a basis for indexing, search,
sorting, and so on.

Categories
This creates a hierarchical taxonomy for what the content is about and places
it in a high-level category (text classification). This is useful for applications
like recommending relevant content, generating ads, organizing emails, and
so on.

Historically, you could implement NLP capabilities by either programming the
rules directly, which made them difficult to adapt to new data or scale, or you
could use machine learning models. But training machine learning models
requires having access to rare expertise, large datasets, and complex tools, which
limited their implementation to only large organizations that could afford it.

The availability of NLP capabilities like text classifiers and entity extractors as
easy-to-use APIs in the cloud has powered the widespread use of chatbots. From
the rise of open source tools to the arrival of cloud APIs, NLP capabilities once
sequestered in academia and the research community are now accessible to a
wider audience across industries.

An interesting example of NLP in the cloud is the Language Understanding
(LUIS) service developed by Microsoft. LUIS uses machine learning to allow
developers to build applications that can take user input in natural language and
extract meaning and intent. A client application that converses with the user can
pass user input to a LUIS app and extract the key concepts expressed by the user.

As with other Cognitive Services in the Microsoft AI platform, LUIS caters to the
spectrum of developer expertise; you can use a prebuilt model, customize an
existing one, or build your own from scratch. A model begins with a list of gen‐
eral user intents such as “book flight” or “contact help desk.” After you identify
the intent, you provide phrases called utterances (which is the substance of the
dialog) for the intent. Then, you label the utterances with any specific details you
want LUIS to pull out of the utterance. With prebuilt domains, you will have a set
of entities and utterances for common categories like calendar, entertainment,
communication, home automation, and more.

A system like LUIS is designed to extract the following key outputs:

Ability to recognize intents
What is the goal of the user? The intent is a purpose or goal expressed in a
user’s input, such as booking a flight, paying a bill, or finding a news article.
You define and name intents that correspond to these actions. A travel app
might define an intent named “BookFlight.”

14 | A Developer’s Guide to Building AI Applications

https://www.luis.ai/home
https://www.luis.ai/home

Ability to recognize utterances (dialog)
Utterances or dialog is text input from the user that your app needs to under‐
stand. It might be a sentence such as, “Book a ticket to Paris,” or a fragment
of a sentence like, “Booking,” or, “Paris flight.” Utterances and dialogs aren’t
always well formed, and there can be many dialog variations for an intent.

Ability to recognize entities
An entity represents detailed information that is relevant in the dialog. For
example, in the dialog, “Book a ticket to Paris,” “Paris” is a location entity. By
recognizing and labeling the entities that are mentioned in the user’s dialog,
LUIS helps you choose the specific action to take to answer a user’s request.

LUIS also allows developers to continuously improve the app through active
learning. It also integrates with other AI tools in the cloud to power natural lan‐
guage in apps, bots, and IoT devices. Microsoft provides an additional set of tools
through its Bot Framework, to incorporate LUIS and other Cognitive Services
into the development of bots. The Microsoft Bot Framework provides an integra‐
ted development environment (IDE) to enable you to build, connect, test, deploy,
and manage intelligent bots from one location.

Customers primed by their experiences with digital assistants and their wide‐
spread use of messaging apps, are engaging more and more with bots—they tend
to make for a better user experience because they can typically respond faster and
more effectively to user requests. For a lot of companies, bots are becoming a
competitive differentiator. As we discussed earlier, many companies are strategi‐
cally making chatbots available within the same messaging platforms their cus‐
tomers like to hang out in. Let us look at one bot use case—the Stack Overflow
bot.

Your First Bot: The Scenario
Now, let’s now look at how you can build your first bot. Imagine you are attend‐
ing a technology conference presentation with hundreds of other enthusiastic
attendees. As the speaker is presenting, you have a running list of questions. You
want to ask your questions but:

• It is not Q&A time.
• You don’t relish the idea of speaking up in public.
• You didn’t raise your hand high enough or weren’t picked during Q&A.
• You have a language barrier and cannot communicate fluently in the speak‐

er’s native language.

The reasons go on and on. Most people don’t have an opportunity to fully engage
with the speaker and content during conferences because of the logistics or other
barriers.

Developing an Intelligent Chatbot | 15

What if you had a “Conference Buddy” chatbot that you could ask your questions
as they occur to you and get answers as you go? And those questions also get
routed on a dashboard where the speaker can engage and answer questions from
the audience in real time.

The Conference Buddy chat client that we are going to build will have three func‐
tions:

1. Answer your greetings and introduce itself, as shown in Figure 1-2.

Figure 1-2. The Conference Buddy bot greeting

2. Answer some of your questions intelligently and automatically, when possi‐
ble, as demonstrated in Figure 1-3.

16 | A Developer’s Guide to Building AI Applications

Figure 1-3. Conference Buddy Bot Question

3. Route your question for the speaker to a dashboard so the speaker can see all
the questions from the audience, pick the question to answer, and engage, as
illustrated in Figure 1-4.

Developing an Intelligent Chatbot | 17

Figure 1-4. the Conference Buddy dashboard app

To get a feel for how this app looks and feels, I encourage you to visit the Github
website https://aka.ms/conferencebuddy to see a demonstration and review the
code for this sample.

An Overview of the Conference Buddy Bot Architecture
We will use a microservices architecture for building our bot (Figure 1-5) so that
each component can be built, deployed, and scaled independently.

18 | A Developer’s Guide to Building AI Applications

https://aka.ms/conferencebuddy

Figure 1-5. The Conference Buddy bot architecture

In our Conference Buddy bot, we have two major components:

Conference Bot
This component intelligently handles all message related events.

Bot Brain
This abstracts the business logic in the bot. Within the Bot Brain there are
Individual Bot Tasks.

The questions and results are displayed on the Conference Buddy dashboard.
Let’s take a look at all of these components individually.

Conference Bot
The Conference Bot, built on the Bot Framework, intelligently handles all partici‐
pant message events. The bot is omnichannel, which means users can email,
Skype, or use a custom message service that will connect through the bot connec‐
tor to reach the Conference Bot. Figure 1-6 shows the greeting when the Confer‐
ence Buddy app is invoked.

Developing an Intelligent Chatbot | 19

Figure 1-6. Conference Buddy bot greeting

The Conference Buddy does several things that are indicative of good design
principles when it comes to the opening dialog:

• First the bot greets you with, “How are you?”
• Then, it introduces itself: “I am your buddy for today’s conference. I’m still in

training but would love to help you learn more.”
• It gives you specific details on what it does: “Feel free to ask me any ques‐

tions…”
• Finally, built in to the details is a suggested format on how you can phrase

your questions: “Who is…” “I want to learn more about…” which will make
it easier to process as well.

The Conference Buddy sends the message it receives from the user to LUIS to
determine the intent of the message. Then, it selects the appropriate bot task in
the Bot Brain to call via HTTP post to process the message. We dive into more

20 | A Developer’s Guide to Building AI Applications

details when we discuss the conversation flow as an example in the next subsec‐
tion.

Bot Brain
The Bot Brain is the logic or business intelligence that powers the Conference
Buddy bot. In Figure 1-5, we summarized the current bot tasks within the Bot
Brain:

• Ask Who task
• Learn More task
• Answer Questions task

The Bot Brain is a collection of intelligent bot tasks where each bot task is a func‐
tion to complete a single task and is independent of other bot tasks. This is one of
the ways we implemented microservices in our architecture. If one of the bot
tasks returns an erroneous message, it is much easier to debug and fix the source
of the issue without affecting the other bot tasks or components in the architec‐
ture.

Another example of microservices implementation is how we ensured that the
Conference Bot that handles the message events is separate from the logic. In this
way, each component is concerned only with carrying out its own functions; this
makes it easier to optimize performance and scale, as well. An analogy of how
microservices works is to imagine a car assembly factory where different parts
are shipped from China, Japan, the United States, and so on. From the assembly
workers’ perspective, they don’t care about the specific inner workings of each
part, they just want to put each part in the right place, plug it in, and make sure
the entire car works. When one part fails to work, it is usually easy to isolate the
part and either replace or fix it without worrying about dismantling the entire
car.

What enables the Conference Bot to talk to the Bot Brain is the Data Contract.
The Data Contract is comprised of a Request Object and Response Object, and
specifies the format and properties of what the request and response should
include. The Data Contract is what enables the abstraction within our Confer‐
ence Buddy bot. Without the Data Contract, the Conference Bot would not be
able to invoke the Bot Brain or access the bot tasks to process the response.

In addition, the Bot Brain is reusable and can be used by other bots or applica‐
tions. The Bot Brain can also evolve and grow in intelligence by adding new bot
tasks.

We illustrate how to teach the Bot Brain new skills in the next section.

Developing an Intelligent Chatbot | 21

Bot task
The bot task is a function of the business logic that can take advantage of multi‐
ple Cognitive Services APIs to process the users’ messages. The bot task is a func‐
tion within the Bot Brain collection. Each bot task can be deployed to the same
web service, or separate web services, and scaled independently from one
another.

For example, the “Ask Who” task uses two Cognitive Services APIs—Bing Web
Search and Bing Image Search—combining the results in a response object and
sending it back to the Conference Bot. The Conference Bot then creates a rich
graphical card to be returned the user. Because all of the bot tasks in our Confer‐
ence Buddy bot invoke the Bing Web Search API, our chatbot will have immedi‐
ate access to the world’s online knowledge through an intelligent search that will
provide relevant results. In addition, the “Learn More” bot task calls the Custom
Bing Search, which allows you to use the same AI functionality that powers the
Bing Search to a restricted number of websites. In our example of the Conference
Buddy bot, we restricted the websites to themes related to the conference.

The bot tasks are all within a single Azure Functions app but exist as separate
functions. Azure Functions is a solution for easily running small pieces of code,
or “functions,” in the cloud. You can write just the code you need for the problem
at hand, without worrying about an entire application or the infrastructure to
run it. Each bot task can also send the message to the Azure Search Questions
Store to be consumed by the dashboard.

We provide sample code to help you get started on each of the common
patterns and other scenarios built with the Bot Builder Samples Reposi‐
tory at Github.

Conversation Flow: An Example of the Conference Buddy Bot in
Action
To get an idea of how the Conference Buddy bot works in action, let’s examine a
typical conversation flow:

1. The user invokes the Conference Bot by sending the first message.
2. The Conference Bot responds with a greeting and introduction of what it can

do.
3. The user asks a question; for example, “Who is Lili Cheng?”
4. The Conference Bot routes the message to LUIS to determine the intent of

the message: LUIS parses the message and, for our example, returns “This is
an Ask Who Task.”

22 | A Developer’s Guide to Building AI Applications

https://aka.ms/conferencebuddy
https://aka.ms/conferencebuddy

5. The Conference Bot then selects the appropriate bot task within the Bot
Brain to call via HTTP Post. In our example, the “Ask Who” task will do the
following:
a. Send the string to Bing Web Search and grab the results.
b. Send the string to Bing Image Search in parallel.
c. Combine the image and text into a response object/data contract that the

Conference Bot understands.
6. The Conference Bot sends a graphical card as results to the user.
7. The Conference Bot sends results to Azure Search to be archived so that the

dashboard can use it.
8. The user can click the link on the card to get more information from the

source of the article.
Figure 1-7 illustrates the “Who is?” response card for “Lili Cheng.”

Figure 1-7. A “Who Is?” card

Developing an Intelligent Chatbot | 23

Let’s demonstrate the “Learn More” task to illustrate this entire process:

1. Suppose that the user asks, “I want to learn more about Azure Machine
Learning.”

2. The Conference Bot routes the message to LUIS to determine the intent of
the message: LUIS parses the message and, for our example, returns “This is
a Learn More task.”

3. The Conference Bot then selects the appropriate bot task to call via HTTP
Post to process the message: in our example, “The Learn More Task” will call
Text Analytics to extract key phrases and send parallel requests to the follow‐
ing:
a. Video Indexer: Video Indexer is a Cognitive Service that will get the tran‐

script of the video, break it into keywords, annotate the video, analyze
sentiment, and moderate content. You can upload specific videos related
to the session, and it will play the video right at the moment at which the
speaker is discussing the keyword entered.

b. Bing Custom Search: Enables the power of Bing Search on a restricted
number of websites to increase the relevancy and speed of results. In the
case of the Conference Buddy bot, we included websites that dealt only
with the conference themes.

c. Bing Web Search: Bing Web Search is activated in case the prior Video
Indexer and Bing Custom Search don’t yield any results.

Now let’s look at the some of the design considerations and take a deeper dive
into the bot’s architecture.

Conference Buddy Bot design considerations
At a high level, a bot is like any other application or website, so the same design
considerations apply for building a good user interface (UI) and user experience
(UX).

In building our Conference Buddy bot, we considered the following questions in
turn:

Identifying the purpose
What is the purpose for building the bot? What is the goal of the users in
interacting with the bot? In this case, we want to give the conference attend‐
ees a platform to ask questions and engage the speaker.

General bot design pattern
What general design bot pattern does it follow? The Conference Buddy bot is
an example of a Knowledge Base bot pattern—a bot that finds and returns

24 | A Developer’s Guide to Building AI Applications

the information that a user has requested, with an option to escalate to a
human agent. Here are some other common bot patterns and examples:

• Task automation and completion: This pattern enables the user to com‐
plete a specific task or set of tasks without any assistance from a human.
An example might be a Password-Reset bot that can walk users through
resetting their password and free up help desk personnel to focus on
more complex issues. Another example might be an HR assistant bot
that can field an employee’s request to change their last name and update
the Employee Profile and records.

• Bot to web: This sends the user to a web browser to complete a task and
then resumes the conversation with the user after the task has been com‐
pleted. Typical use cases involve handling security, authentication, and
authorization. After the user is verified, the bot will then access personal
data (with user approval) and continue the task at hand. An example
might be a virtual insurance agent chatbot that verifies an existing cus‐
tomer and then helps the customer to upgrade their plan or make
changes to their policy.

• Handoff to human: This pattern hands off via a smooth transition to a
human when it identifies a scenario requiring human intervention.

• Bots in apps: This helps users navigate more complex apps and hands
off to a human when needed. An example is a help desk user app bot
that handles first response when a user interacts with it.

• Bots in websites: This pattern assists users in navigating complex web‐
sites and finding information quickly.

Messaging platform
On which messaging platform will the bot reside? What devices and platforms do
our users care about? There are popular existing messaging channels like Skype,
Facebook Messenger, Slack, Kik, and others, or you can build a custom messag‐
ing layer on an existing mobile app or website.

The key is first figuring out where your target audience spends time. Are you a
popular gaming platform and want to introduce an in-game reward bot? A small
business building a following on social media? A large bank with a popular
mobile app? The location of your bot will also be tied to the specific reason you
are building it.

To reach as many audience members as possible, we decided to make our Con‐
ference Buddy bot omnichannel. To do this, you would need to develop a special
plug-in for each source that takes care of the specific protocol between the infor‐
mation source and your system. The Microsoft Azure Bot Service Framework
allows you to connect with more than one messaging channel and receive the

Developing an Intelligent Chatbot | 25

10 Connect a Bot to Channels

information in a standard format regardless of its source. Figure 1-8 shows the
Microsoft Azure Bot Service screen, on which adding new channels is a matter of
several clicks.10

Figure 1-8. Multiple connections to channels

Overall bot architecture
How will your bot transform the information to a standard format that can be
ingested for processing? And how does it return the information in a way that
will be consumed by the channel? For our Conference Buddy bot, implement a
data contract to abstractly describe the data to be exchanged. A data contract pre‐
cisely defines, for each parameter or return type, what data is serialized (turned
into XML) to be exchanged.

For general principles of bot design and more in-depth recommenda‐
tions, see the Principles of Bot Design section of the Microsoft Azure
Bot Service documentation.

Conference Buddy Bot Architecture Details
Let’s take a deeper dive into the Conference Buddy bot architecture details and
explore the code samples that power the chatbot.

26 | A Developer’s Guide to Building AI Applications

https://docs.microsoft.com/en-us/bot-framework/bot-service-manage-channels
http://bit.ly/2urUm2e

Root Dialog
Whereas a traditional application starts with a main screen and users can navi‐
gate back to start over, with bots you have the Root Dialog. The Root Dialog
guides the conversation flow. From a UI perspective, each dialog acts like a new
screen. This way, dialogs help the developer to logically separate out the various
areas of bot functionality.

For the Conference Buddy bot, each dialog invokes the next, depending on what
the user types and the intent. This is called a waterfall dialog. A waterfall dialog is
a type of dialog that allows the bot to easily walk a user through a series of tasks
or collect information. The tasks are implemented as an array of functions where
the results of the first function are passed as input into the next function, and so
on. Each function typically represents one step in the overall process. At each
step, the bot prompts the user for input, waits for a response, and then passes the
result to the next step.

So, let’s consider our Conference Buddy bot. If the user types:

"Hello there, buddy!"

The Root Dialog will send the string to LUIS and wait for a response. LUIS will
evaluate the string and send back a JSON object with the results. For each intent,
LUIS gives a confidence score, it highlights the topScoringIntent and identifies
the entities in the query, as well. The following code shows an example response:

{
"query": "Hello there, buddy",
"topScoringIntent": {
 "intent": "Greeting",
 "score": 0.9887482
 },
"intents": [
 {
 "intent": "Greeting",
 "score": 0.9887482
 },
 {
 "intent": "who",
 "score": 0.04272597
 },
 {
 "intent": "learnmore",
 "score": 0.0125702191
 },

 },
],
 "entities": [
 {
 "entity": "buddy",
 "type": "Person",

Developing an Intelligent Chatbot | 27

 "startIndex": 20,
 "endIndex": 24,
 "score": 0.95678144
 }
]
}

When LUIS returns the intent as "Greeting", the Root Dialog processes the
function “Greeting Intent.” This function displays the Greeting Dialog, which in
our example does not need to invoke a bot task. The control will remain with the
Greeting Dialog until the user types something else. When the user responds, the
Greeting Dialog closes and Root Dialog resumes control.

Now let’s explore the following Root Dialog sample code to see how the rest of
the intents are processed:

public Task StartAsync(IDialogContext context)
{
 context.Wait(MessageReceivedAsync);
 return Task.CompletedTask;
}
private async Task MessageReceivedAsync(IDialogContext context,
 IAwaitable<object> result)
{
 try
 {
 var activity = await result as Activity;
 string message = WebUtility.HtmlDecode(activity.Text);
 if (string.IsNullOrEmpty(message) == true)
 { return;
 }
 // Handle the explicit invocation case in Skype
 string channelId = GetChannelId(activity);

 if (channelId == "skype" &&
 message.StartsWith(activity.Recipient.Name) == true)
 {
 message =
 message.Substring(activity.Recipient.Name.Length).Trim();
 }
 else if (channelId == "skype" &&
 message.StartsWith
 ("@" + activity.Recipient.Name) == true)
 {
 message =
 message.Substring
 (activity.Recipient.Name.Length + 1).Trim();
 }
 // Handle intents
 LUISResult luisResult = await GetEntityFromLUIS(message);
 string intent =
 luisResult.intents?.FirstOrDefault()?.intent ??string.Empty;
 string[] entities =

28 | A Developer’s Guide to Building AI Applications

 luisResult.entities?.Select
 (e => e.entity)?.ToArray() ?? new string[0];
 if (intent == "greeting")
 {
 await ProcessGreetingIntent(context, message);
 }
 else if (intent == "who")
 {
 await ProcessQueryIntent
 (context, activity, BotTask.AskWho, message, entities);
 }
 else if (intent == "learnmore")
 {
 await ProcessQueryIntent
 (context, activity, BotTask.AskLearnMore, message, entities);
 }
 else
 {
 await ProcessQueryIntent(
 context, activity,
 BotTask.AskQuestion, message, entities);
 }

The Root Dialog does not get invoked unless a user types a message. When the
Conference Buddy bot receives the first message, we do a special handling in the
code for messages coming from the Skype channel.

We discussed what happens when LUIS returns the Greeting Intent. In our exam‐
ple chatbot, we anticipate three other possible intents from LUIS:

• If the intent is “Who,” the Root Dialog posts the question to the bot task “Ask
Who.”

• If the intent is “Learn More,” the Root Dialog posts the question to the bot
task “Learn More.”

• For all other intents, the Root Dialog sends the text to the “Ask Question”
message.

At this point, the Root Dialog hands control to the appropriate bot task.

The Bot Brain abstraction layer
The abstraction layer handles the Post call to a bot task within the Bot Brain. This
is where the benefit of the microservices implementation becomes clear. The
Root Dialog has handled the message and LUIS processed the intent. At this level,
the Bot executes the relevant bot task.

Let’s explore the code:

 private static async
 Task<string>ProcessQueryIntent(IDialogContext context,

Developing an Intelligent Chatbot | 29

 Activity activity,BotTask task, string query, string [] topics)
 {
 // Prepare the request to invoke a bot task within the bot brain
 AskQuestionRequest request = new AskQuestionRequest()
{
 ConversationId = activity.Conversation.Id,
 Question = query,
 SessionId = SessionId,
 Topics = topics != null ? topics.ToArray() : new string[0],
 UserId = string.IsNullOrEmpty(activity.From.Name)
 == false ? activity.From.Name : activity.From.Id
 };
 // Invoke the bot task to process the request
 AskQuestionResponse askQuestionResponse =
 await
 HttpClientUtility.PostAsJsonAsync
 <AskQuestionResponse>
 (new Uri(BotBrainUrl + task.ToString()), RequestHeaders, request);
 // Handle the response returned from the
 bot task to be shown as cards depending on channel
 if (askQuestionResponse.Results?.Count() > 0 == true)
 {
 IMessageActivity foundMsg = context.MakeMessage();
 AskQuestionResult result = askQuestionResponse.Results[0];
 if (string.IsNullOrEmpty(result.Source) == false)
 {foundMsg.Text = string.Format
 ("Got it. Meanwhile, from {0}:", result.Source);
 }
 else
 {
 foundMsg.Text = "Got it. Meanwhile, here's what I found:";
 }
 await context.PostAsync(foundMsg);
 IMessageActivity cardMessage;
 string channelId = GetChannelId(activity);
 if (channelId == "kaizala")
 {
 cardMessage = await
 GetKaizalaCardMessage(context, request, result);
 }
 else if (channelId == "directline" || channelId == "emulator")
 {
 cardMessage =
 GetAdaptiveCardMessage(context, request, result);
 }
 else
 {
 cardMessage = GetHeroCardMessage(context, request, result);
 }
 await context.PostAsync(cardMessage);
 }
 else if (task != BotTask.AskQuestion)
 {

30 | A Developer’s Guide to Building AI Applications

 IMessageActivity notFoundMsg = context.MakeMessage();
 notFoundMsg.Text =
 "I can't seem to find it.
 Can you rephrase the question and try again?";
 await context.PostAsync(notFoundMsg);
 }

 return "success";
 }

What’s important in this layer, no matter which bot task is called, the request,
invocation, and response are handled the same way. The Data Contract called
AskQuestionRequest combines the ConversationID, Query, SessionID, and
UserID to pass to the bot task through an HTTP Post.

The HTTP Post is the call into a bot task within the Bot Brain. When the appro‐
priate bot task executes the query, it prepares the response in the AskQuestion
Response where no matter which bot task, the response is handled generically.

Because the Conference Buddy bot is omnichannel, the response card is dis‐
played differently according to the channel; the last part of the code shows how
the bot implements adaptive cards.

The Data Contract
Without the Data Contract, there will be no abstraction layer at all. The Data
Contract code that follows acts as the formal agreement between the bot and Bot
Brain and abstractly describes the data to be exchanged.

Let’s explore the code and see the details behind how the AskQuestionRequest,
which specifies the details to be sent with each query, and the details behind the
AskQuestionResponse, which specifies the details for each response, no matter
what the bot task does:

 namespace ConferenceBuddy.Common.Models
{
[DataContract]
 public class AskQuestionRequest
 {
 /// <summary>
 /// The session identifier
 /// </summary>
 [DataMember(Name = "sessionId")]
 public string SessionId { get; set; }
 /// <summary>
 /// The conversation identifier
 /// </summary>
 [DataMember(Name = "conversationId")]
 public string ConversationId { get; set; }
 /// <summary>
 /// The user identifier

Developing an Intelligent Chatbot | 31

 /// </summary>
 [DataMember(Name = "userId")]
 public string UserId { get; set; }
 /// <summary>
 /// The text of the question
 /// </summary>
 [DataMember(Name = "question")]
 public string Question { get; set; }
 /// <summary>
 /// The topics of the question
 /// </summary>
[DataMember(Name = "topics")]
 public string [] Topics { get; set; }
 }
 [DataContract]
 public class AskQuestionResponse
 {
 /// <summary>
 /// The unique id of the response
 /// </summary>
 [DataMember(Name = "id")]
 public string Id { get; set; }

 /// <summary>
 /// The results of the response
 /// </summary>
 [DataMember(Name = "results")]
 public AskQuestionResult [] Results { get; set; }
 }
[DataContract]
 public class AskQuestionResult
 {
 /// <summary>
 /// The title of the result
 /// </summary>
 [DataMember(Name = "title")]
 public string Title { get; set; }

 /// <summary>
 /// The answer of the result
 /// </summary>
 [DataMember(Name = "answer")]
 public string Answer { get; set; }
 /// <summary>
 /// The image url of the result
 /// </summary>
 [DataMember(Name = "imageUrl")]
 public string ImageUrl { get; set; }
 /// <summary>
 /// The source of the result
 /// </summary>
 [DataMember(Name = "source")]
 public string Source { get; set; }

32 | A Developer’s Guide to Building AI Applications

 /// <summary>
 /// The url of the result
 /// </summary>
 [DataMember(Name = "url")]
 public string Url { get; set; }

 /// <summary>
 /// The url display name of the result
 /// </summary>
 [DataMember(Name = "urlDisplayName")]
 public string UrlDisplayName { get; set;
 }
 }

The Data Contract allows the separation of functions between how a query is
processed and how the response is generated. Think of the Data Contract as the
postal carrier. From the postman’s perspective, the specific details of the contents
in the letter/package are irrelevant. What matters is the format of the “To” and
“From” address to allow delivery to the right location.

If we had to make different HTTP calls to each bot task, the Conference Buddy
bot will be unwieldy and difficult to build, test, deploy, and scale. In the next sec‐
tion, we see how the microservices implementation makes it simpler to develop
the Bot Brain’s intelligence and teach our Conference Buddy bot new skills.

Adding “Plug and Play” Intelligence to Your Bot
We can teach our Conference Buddy bot new skills by developing the Bot Brain’s
intelligence. So far, we have built a Conference Buddy bot that has three main bot
tasks:

• Ask Who task
• Learn More task
• Answer Question task

We built the Conference Buddy architecture in a flexible way, so a developer can
easily add more bot tasks. So, let’s expand on our Conference Buddy bot scenario.
Suppose that the conference is broadcast globally and the audience members hail
from different countries and speak different languages, whereas the speaker
understands only English. You might want to add a new task to allow your bot to
handle questions in different languages and translate the question to English for
the speaker to address.

For our bot, we will make an additional call to Cognitive Services: Microsoft
Translator. This is a machine translation service that supports more than 60 lan‐
guages. The developer sends source text to the service with a parameter indicat‐

Adding “Plug and Play” Intelligence to Your Bot | 33

ing the target language, and the service sends back the translated text for the
client or web app to use.

The translated text can now be used with the other Cognitive Services that we
have used so far, such as text analytics and Bing web search.

To make a call to a new Cognitive Service, you need to log in to your Azure por‐
tal. This Quick Guide walks you through editing the bot code and using Azure
Functions to invoke various APIs. In the sample code that follows, we illustrate
how to add the new translation bot task.

Let’s explore the code:

[FunctionName("AskQuestion")]
 public static async Task<HttpResponseMessage>
 Run(
 [HttpTrigger(AuthorizationLevel.Function, "post", Route =
 "AskQuestion")]HttpRequestMessage request,
 [Table("Session", Connection =
 "AzureWebJobsStorage")]ICollector<SessionTableEntity> sessionTable,
 TraceWriter log)
 {
 MediaTypeHeaderValue contentType = request.Content.Headers.ContentType;

 // Check if content type is empty
 if (contentType == null)
 {
 return request.CreateResponse
 (HttpStatusCode.BadRequest, "Missing content-type from header.");
 }
 else if (contentType.MediaType.Contains("application/json") == false)
 {
 return request.CreateErrorResponse
 (HttpStatusCode.UnsupportedMediaType,
 string.Format("Request's content type ({0}) is not supported.",
 string.Join(", ", contentType.MediaType)));
 }

 // Read content from request
 AskQuestionRequest requestBody = await
 request.Content.ReadAsAsync<AskQuestionRequest>();

 // Verify content contains a valid image uri
 if (string.IsNullOrEmpty(requestBody.Question) == true)
 {
 return request.CreateResponse(HttpStatusCode.BadRequest,
 "Question is missing from the request content.");
 }
 else if (string.IsNullOrEmpty(requestBody.SessionId) == true)
 {
 return request.CreateResponse(HttpStatusCode.BadRequest,
 "Session id is missing from the request content.");
 }

34 | A Developer’s Guide to Building AI Applications

http://bit.ly/2uysfhW

 // Translate question
 requestBody.Question = await
 ServicesUtility.Translator.TranslateTextAsync(requestBody.Question);

 // Answer the question
 AskQuestionResponse response =
 await AnswerQuestion(requestBody, sessionTable);

 // Return request response with result and 200 OK
 return request.CreateResponse(HttpStatusCode.OK, response);
}

 public static async
 Task<AskQuestionResponse> AnswerQuestion(AskQuestionRequest request,
 ICollector<SessionTableEntity> sessionTable)
{
 // Get unique identifier
 string id = Guid.NewGuid().ToString();
 DateTime timestampUtc = DateTime.UtcNow;

 // Run keyphrases extraction
 request.Topics = await ServicesUtility.GetTopics
 (request.Question, request.Topics);

 // Run search services
 string queryWithTopics = request.Topics?.Count() > 0 ?
 string.Join(" ", request.Topics).Trim() : request.Question;

 Task<BingWebSearchResult> bingWebSearchTask =
 ServicesUtility.BingSearch.SearchWebAsync
 (query: request.Question, count: SettingsUtility.MaxResultsCount);
 Task<BingWebImagesResult> bingWebImagesTask =
 ServicesUtility.BingSearch.SearchImagesAsync
 (query: request.Question, count: SettingsUtility.MaxResultsCount);

 await Task.WhenAll(bingWebSearchTask, bingWebImagesTask);

 BingWebSearchResult bingWebSearchResult = bingWebSearchTask.Result;
 BingWebImagesResult bingWebImagesResult = bingWebImagesTask.Result;

 // Process results
 AskQuestionResponse response = new AskQuestionResponse()
 {
 Id = id,
 Results = new AskQuestionResult[0]
 };

 if (bingWebSearchResult.WebPagesResult?.Values?.Count() > 0)
 {
 response.Results =
 ServicesUtility.GetAskQuestionResults(bingWebSearchResult);
 }

Adding “Plug and Play” Intelligence to Your Bot | 35

 if (response.Results.Any(r => string.IsNullOrEmpty(r.ImageUrl)
 == true) == true && bingWebImagesResult?.Values?.Count()
 > 0 == true)
 {
 response.Results =
 ServicesUtility.AddImageToResults(response.Results,
 bingWebImagesResult);
 }

 // Upload search document
 await
 ServicesUtility.UploadDocumentToSearchService
 (SettingsUtility.AzureSearchIndexName,
 new SessionSearchDocument
 (id, timestampUtc, "AskQuestion", request, response));

 // Write to session table
 sessionTable.Add(new SessionTableEntity
 (id, timestampUtc, "Question", request, response));

 return response;
 }

In the first part of the code, the function AskQuestion reads the content from the
request and translates the question into English using the Translator. It then
extracts the Key Phrases using Text Analytics and sends the query to Bing Web
Search and Bing Image Search to create a card for the response. The Key Phrases
go to Azure Search to power the bot’s analytics as well as the dashboard. In this
example, we do not translate the response back into the original language, but
that could be an option for other implementations.

Now that we have successfully added a new bot task, we can continue to develop
the Bot Brain’s intelligence to add more abilities like adding other APIs such as
vision, speech, and more through our Cognitive Services. Let’s explore the Con‐
ference Buddy dashboard.

Building an Enterprise App to Gain Bot Insights: The
Conference Buddy Dashboard
The Conference Buddy dashboard is part of the Conference Buddy bot. The
dashboard acts as the question and answer repository for both conference
attendees and the speaker to explore. The Conference Buddy dashboard (see
Figure 1-9) does the following:

• Displays questions asked from all audience members in real time

36 | A Developer’s Guide to Building AI Applications

• Allows the speaker to quickly search, sort, or filter the results by a Session,
Bot Skills, or Topic to view relevant questions submitted

Figure 1-9. The Conference Buddy dashboard app

We built the dashboard using the ASP.NET Core MVC, which is a rich frame‐
work for building web apps and APIs using the Model-View-Controller design
pattern. You can find information here to guide you through building a Web App
similar to our Conference Buddy dashboard.

Many web apps will need a search capability for the application content. Having
an easy-to-use search API in the cloud can be a big boon to developers. We
embed Azure Search in our Conference Buddy dashboard to search the questions
being asked. Azure Search is a simple Search-as-a-Service API that allows devel‐
opers to embed a sophisticated search experience into web and mobile applica‐
tions without having to worry about the complexities of full-text search and
without having to deploy, maintain, or manage any infrastructure.

Building an Enterprise App to Gain Bot Insights: The Conference Buddy Dashboard | 37

http://bit.ly/2E2yrya

For the Conference Buddy dashboard, Azure Search does the following:

• Powers the search functionality
• Indexes the key phrases extracted to appear as topics
• Allows results to be filtered and sorted for ease of referencing

The following sample code shows the call into Azure Search:

public class SessionSearchService
{
 private ISearchIndexClient IndexClient;

 public SessionSearchService()
 {
 string searchServiceName =
 ConfigurationManager.AppSettings["SearchServiceName"];
 string index =
 ConfigurationManager.AppSettings["SearchServiceIndexName"];
 string apiKey =
 ConfigurationManager.AppSettings["SearchServiceApiKey"];

 SearchServiceClient searchServiceClient = new
 SearchServiceClient
 (searchServiceName, newSearchCredentials(apiKey));
 this.IndexClient =
 searchServiceClient.Indexes.GetClient(index);
 }
 public SessionSearchService()
 {
 string searchServiceName =
 ConfigurationManager.AppSettings["SearchServiceName"];
 string index =
 ConfigurationManager.AppSettings["SearchServiceIndexName"];
 string apiKey
 = ConfigurationManager.AppSettings["SearchServiceApiKey"];

 SearchServiceClient searchServiceClient = new
 SearchServiceClient
 (searchServiceName,new SearchCredentials(apiKey));
 this.IndexClient = searchServiceClient.Indexes.GetClient(index);
 }

 public async Task<DocumentSearchResult>
 SearchAsync(string searchText, stringsessionFacet,
 string topicsFacet, string skillFacet,
 string isAnsweredFacet, int currentPage,
 int numResultsPerPage, bool sortByLatest)
 {
 // Execute search based on query string
 try
 {
 if (string.IsNullOrEmpty(searchText) == true)

38 | A Developer’s Guide to Building AI Applications

 {
 searchText = "*";
 }

 SearchParameters sp = new SearchParameters()
 {
 SearchMode = SearchMode.Any,
 Top = numResultsPerPage,
 Skip = currentPage * numResultsPerPage,
 // Limit results
 Select = new List<String>()
 {
 "id", "userId", "sessionId", "question",
 "skill", "topics","timestampUtc", "answerTitle",
 "answerContent", "answerImageUrl", "answerSource",
 "answerUrl", "answerUrlDisplayName", "isAnswered"
 },
 // Add count
 IncludeTotalResultCount = true,
 // Add facets
 Facets = new List<String>()
 { "sessionId,count:0", "topics,count:20",
 "skill,count:0", "isAnswered,count:0" },
 MinimumCoverage = 75
 };

 string orderBy = sortByLatest == true ? "desc" : "asc";

 sp.OrderBy = new List<String>() { "timestampUtc " + orderBy };

 // Add filtering
 IList<string> filters = new List<string>();

 if (string.IsNullOrEmpty(sessionFacet) == false)
 {
 filters.Add(string.Format
 ("sessionId eq '{0}'", sessionFacet));
 }

 if (string.IsNullOrEmpty(skillFacet) == false)
 {
 filters.Add(string.Format("skill eq '{0}'", skillFacet));
 }

 if (string.IsNullOrEmpty(topicsFacet) == false)
 {
 filters.Add(string.Format
 ("topics/any(kp: kp eq '{0}')", topicsFacet));
 }

 if (string.IsNullOrEmpty(isAnsweredFacet) == false)
 {
 filters.Add(string.Format

Building an Enterprise App to Gain Bot Insights: The Conference Buddy Dashboard | 39

 ("isAnswered eq {0}", isAnsweredFacet));
 }

 sp.Filter =
 filters.Count() > 0 ?
 string.Join(" and ", filters) : string.Empty;

 return await
 this.IndexClient.Documents.SearchAsync(searchText, sp)
}
 catch (Exception ex)
 {
 Console.WriteLine
 ("Error querying index: {0}\r\n", ex.Message.ToString());
 }
 return null;
 }

Bot Insights: Instrumenting your Bot
Most web applications and bots will want to analyze the usage and other statistics
of the bot. Such analytics can also help detect and diagnose exceptions and appli‐
cation performance issues. The Azure Bot Service provides Bot Analytics, which
is an extension of Azure Application Insights. Application Insights provides
service-level and instrumentation data, such as traffic, latency, and integrations.
Bot Analytics provides conversation-level reporting on user, message, and chan‐
nel data. Bot Analytics affords you the full benefit of insights without having to
write a single line of code.

To enable Analytics on the bot (see Figure 1-10), do the following:

1. Install a small instrumentation package in your application and set up an
Application Insights resource in the Azure portal. The instrumentation mon‐
itors your app and sends telemetry data to the portal. The application can
run anywhere—it doesn’t need to be hosted in Azure. Follow the steps in the
“Create an Application Insight Resource” guide.

2. Open the bot in the dashboard. Click Settings and scroll down to the Analyt‐
ics section.

3. Type the information to connect the bot to Application Insights. All fields
are required.

40 | A Developer’s Guide to Building AI Applications

http://bit.ly/2Giet4g

Figure 1-10. Enable Analytics screen

AppInsights Instrumentation Key
To find this value, open Application Insights, and then navigate to Configure →
Properties.

AppInsights API key
Provide an Azure App Insights API key. Learn how to generate a new API key.
Only Read permission is required.

AppInsights Application ID
To find this value, open Application Insights, and then navigate to Configure →
API Access.

View Analytics for the bot
To access Analytics, open the bot in the developer portal, and then click Analyt‐
ics.

Analytics allows you to specify messages/data via the following:

Channel
You can choose which channels appear in the graphs. Note that if a bot is not
enabled on a channel, there will be no data from that channel.

Time period
Analysis is available for the past 90 days only. Data collection began when
Application Insights was enabled.

Grand totals
Active users and messages sent.

Building an Enterprise App to Gain Bot Insights: The Conference Buddy Dashboard | 41

http://bit.ly/2IaVglv

Retention
How many users sent a message and came back, as demonstrated in
Figure 1-11.

Figure 1-11. Insights screen showing users who messaged again

Users
The Users graph tracks how many users accessed the bot using each channel
during the specified time frame, as shown in Figure 1-12.

Figure 1-12. Insights screen showing users

Messages
The Message graph tracks how many messages were sent and received using
a given channel during the specified time frame (Figure 1-13).

42 | A Developer’s Guide to Building AI Applications

Figure 1-13. Insights screen showing messages

Paving the Road Ahead
Our commitment to democratizing AI goes beyond the cloud AI platform. In
partnership with Facebook, we recently introduced the Open Neural Network
Exchange (ONNX, also see https://onnx.ai/) format, an open source standard for
representing deep learning models that enables models to be ported between
frameworks. Caffe2, PyTorch, Microsoft Cognitive Toolkit (CNTK), Apache
MXNet, and other tools are developing ONNX support, and a long list of part‐
ners such as AMD, Nvidia, IBM, Intel, and AWS have announced support.
ONNX is the first step toward an open ecosystem in which AI developers can
easily move between state-of-the-art tools and choose the combination that is
best for them.

By providing a common representation of the computation graph, ONNX helps
developers choose the appropriate AI framework for their task, allows authors to
focus on innovative enhancements, and enables hardware vendors to streamline
optimizations for their platforms.

In the latest update to Windows 10, developers will be able to use AI to deliver
more powerful and engaging experiences. Data scientists can train and deliver
ONNX models for use by Windows developers using Azure Machine Learning.
This is part of Microsoft’s overall investment in delivering a great development
experience for AI developers on Windows.

Microsoft believes in bringing AI advances to all developers, on any platform,
using any language, and with an open AI ecosystem that helps us to ensure that
the fruits of AI are broadly accessible.

Beyond paving the path in providing tools and resources to democratize AI, we
are also engaging in the challenging questions these powerful new technologies

Paving the Road Ahead | 43

https://onnx.ai/

11 There is an ongoing debate about who the originator of this quote is: Marshall McLuhan, Winston
Churchill, and Robert Flaherty are among them. Check this link for the evolution of the discussion.

are forcing us to confront. “We become what we behold. We shape our tools and
then our tools shape us.”11

How do we ensure that AI is designed and used responsibly? How do we estab‐
lish ethical principles to protect people? How should we govern its use? And how
will AI affect employment and jobs? These questions cannot be answered by
technologists alone; it is a societal responsibility that bears discussions across
government, academia, business, civil society, and other stakeholders.

We recently published a book, The Future Computed: Artificial Intelligence and its
Role in Society, that addresses the larger issues governing AI and the future. It
also outlines what we at Microsoft have identified as our six ethical principles to
guide the cross-disciplinary development and use of artificial intelligence:

Fairness
The first principle underscores issues of social justice. How do we design AI
systems to treat everyone in a fair and balanced way, when the training data
we use might be marred with assumptions and biases? Can an AI system that
provides guidance on loan application or employment, for instance, be
designed to make the same recommendations for everyone with similar
financial circumstances or professional qualifications? As a developer, you
will need to be cognizant of how biases can be introduced into the system,
work on creating a representational dataset, and beyond that educate end
users to understand that sound human judgement must complement com‐
puter system recommendations to counter their inherent limitations.

Reliability and Safety
As we become more dependent on AI systems, how can we ensure that our
systems can operate safely, reliably, and consistently? Consider a failure of an
AI-powered system in a hospital, which literally means the difference
between the lives and deaths of people. We must conduct rigorous design
and testing under various conditions, including security considerations on
how to counter cyberattacks and other malicious intents. Sometimes, sys‐
tems might react unexpectedly, depending on the data. At Microsoft, we had
a painful example of unexpected behavior when we unveiled Tay, a conversa‐
tional chatbot on Twitter. Tay was an experiment in conversational AI that
quickly went wrong when users began feeding Tay racist and sexist comment
that she quickly learned and reflected back. We took down Tay within 24
hours. Developers must teach end users what the expected behaviors within
normal conditions are so that when things go wrong the humans can quickly
intervene to minimize damage.

44 | A Developer’s Guide to Building AI Applications

http://bit.ly/2Ggs2Bj
http://bit.ly/2KQkRSr
http://bit.ly/2KQkRSr

Privacy and Security
As our lives become more digitized, privacy and security take on additional
significance. This discussion goes beyond what technologies are used to
ensure the security of data; it must include regulations around how data is
used and for what reasons.

Inclusivity
We want to ensure AI systems empower and engage people across the spec‐
trum of abilities and access levels. AI-enabled services are already empower‐
ing people struggling with visual, hearing, and cognitive disabilities. Building
systems that are context aware with increasing emotional intelligence will
pave the path for more empowerment.

Transparency and Accountability
Designers and developers of AI systems need to create systems with maxi‐
mum transparency. People need to understand how important decisions
regarding their lives are made. With accountability, internal review boards
need to be created to give guidance and oversight on the systems they are in
charge of.

If “developers are writing the script for the future,” as Joel Spolsky, the CEO of
Stack Overflow stated, that puts you, the developer, in the front seat of this larger
conversation. “Every line of code is a decision made by the developer. We are
building the future out of those decisions.”

At Microsoft, we are committed to empowering you with the tools, ethical frame‐
work, and best practices to foster responsible development of AI systems that will
enrich human lives and power innovations, which will in turn solve our most
pressing problems today and anticipate the ones to come in the future. Finally, it’s
important to remember that while many times we get bogged down in the discus‐
sions of the exciting algorithms and tools, the real power of AI resides in the
ideas and questions that precede it. It’s the conservationist pondering how to cre‐
ate sustainable habitats, the doctor wondering how to better serve a patient, the
astronomer’s and citizen scientist’s curiosity that expands our collective con‐
sciousness to the outer limits of the universe. AI has the potential to empower the
noblest of human causes and we are just at the very beginning of an exciting
technological transformation.

Paving the Road Ahead | 45

Acknowledgments
Joseph Sirosh, Wilson Lee, and Vinod Anantharaman

About the Authors
Anand Raman is the Chief of Staff for AI Platform and head of AI Ecosystem at
Microsoft. Previously he was the Chief of Staff for Microsoft Azure Data Group
covering Data Platforms and Machine Learning. In the last decade, he ran the
product management and the development teams at Azure Data Services, Visual
Studio, and Windows Server User Experience teams at Microsoft.

Wee Hyong Tok is a Principal Data Science Manager with the AI Platform team
at Microsoft. He leads the Engineering and Data Science team for the AI for
Earth program.

Wee Hyong has worn many hats in his career—developer, program/product
manager, data scientist, researcher, and strategist, and his track record of leading
successful engineering and data science teams has given him unique superpowers
to be a trusted AI advisor to many customers.

Wee Hyong coauthored several books on artificial intelligence, including the first
book on Predictive Analytics Using Azure Machine Learning and Doing Data Sci‐
ence with SQL Server. Wee Hyong holds a Ph.D. in computer science from the
National University of Singapore.

	Cover
	Microsoft
	Copyright
	Table of Contents
	Chapter 1. A Developer’s Guide to Building AI Applications
	Introduction
	The Intersection of Cloud, Data, and AI
	Modern AI: Intersection of Data, Cloud Computing, and AI
	Systems of Intelligence: A Paradigm Shift

	The Microsoft AI Platform
	Developing an Intelligent Chatbot
	Evolution of Natural-Language Processing and Bots
	Your First Bot: The Scenario
	An Overview of the Conference Buddy Bot Architecture
	Conversation Flow: An Example of the Conference Buddy Bot in Action
	Conference Buddy Bot design considerations
	Conference Buddy Bot Architecture Details

	Adding “Plug and Play” Intelligence to Your Bot
	Building an Enterprise App to Gain Bot Insights: The Conference Buddy Dashboard
	Bot Insights: Instrumenting your Bot

	Paving the Road Ahead

	Acknowledgments
	About the Authors

