

Application
Architecture

Cloud

Guide

i

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2017 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

Microsoft Press books are available through booksellers and distributors worldwide. If you need
support related to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell
us what you think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and
information expressed in this book, including URL and other Internet website references, may change
without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real
association or connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are
trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

Acquisitions Editor:
Christopher Bennage

Developmental Editors:
Mike Wasson, Masashi Narumoto and the Microsoft Patterns and Practices team

Editorial Production:
Phil Evans

Copyeditor:
Jamie Letain

ii

Contents
Overview …...……...……...….……………..…………………… vii

Introduction .. viii
Chapter 1: Choose an architecture style …...……...……….……………..…………………………………… 1

A quick tour of the styles .. 2
Architecture styles as constraints .. 4
Consider challenges and benefits ... 5

Chapter 1a: N-tier architecture style …...…………………………………........……………………………… 6
When to use this architecture ... 7
Benefits .. 7
Challenges .. 7
Best practices .. 8
N-tier architecture on virtual machines .. 8
Additional considerations .. 9

Chapter 1b: Web-Queue-Worker architecture style ……...…………… 10
When to use this architecture ... 11
Benefits .. 11
Challenges .. 11
Best practices .. 11
Web-Queue-Worker on Azure App Service .. 12
Additional considerations .. 12

Chapter 1c: Microservices architecture style ……..…………… 14
When to use this architecture ... 15
Benefits .. 15
Challenges .. 16
Best practices .. 17
Microservices using Azure Container Service ... 19

Chapter 1d: CQRS architecture style …...............…...….........…… 20
When to use this architecture ... 21
Benefits .. 21
Challenges .. 22
Best practices .. 22
CQRS in microservices ... 22

Contents

iii

Chapter 1e: Event-driven architecture style …...……...……………………..…………………..………… 24
When to use this architecture .. 25
Benefits .. 25
Challenges ... 25
IoT architectures .. 26

Chapter 1f: Big data architecture style ……..…………… 27
Benefits .. 29
Challenges .. 29
Best practices .. 30

Chapter 1g: Big compute architecture style ……...…………… 31
When to use this architecture ... 32
Benefits .. 32
Challenges .. 32
Big compute using Azure Batch .. 33
Big compute running on Virtual Machines ... 33

Chapter 2: Choose compute and data store technologies ….........….......................................…… 35
Chapter 2a: Overview of compute options ….........…..….......................… 37
Chapter 2b: Compute comparison ….........….......................................…......................................… 39

Hosting model .. 39
DevOps .. 40
Scalability .. 41
Availability .. 41
Security .. 42
Other .. 42

Chapter 2c: Data store overview …..…......................................… 43
Relational database management systems ... 44
Key/value stores ... 44
Document databases ... 45
Graph databases .. 46
Column-family databases .. 47
Data analytics .. 48
Search Engine Databases .. 48
Time Series Databases ... 48
Object storage ... 49
Shared files .. 49

Chapter 2d: Data store comparison …...….....................................… 50
Criteria for choosing a data store .. 50
General Considerations ... 50
Relational database management systems (RDBMS) .. 52
Document databases .. 53
Key/value stores ... 54

Contents

iv

Graph databases ... 55
Column-family databases .. 56
Search engine databases ... 57
Data warehouse ... 57
Time series databases ... 58
Object storage .. 58
Shared files .. 59

Chapter 3: Design your Azure application: design principles ……...................................………… 60
Chapter 3a: Design for self healing …..…...…………… 62

Recommendations .. 62
Chapter 3b: Make all things redundant ….........…...…… 64

Recommendations .. 64
Chapter 3c: Minimize coordination …..........….......................................…....................................… 66

Recommendations .. 67
Chapter 3d: Design to scale out …..........….......................................…..… 69

Recommendations ... 69
Chapter 3e: Partition around limits …..........….................................…..… 71

Recommendations ... 72
Chapter 3f: Design for operations …..........….................................…..… 73

Recommendations ... 73
Chapter 3g: Use managed services …..........….................................…..… 75
Chapter 3h: Use the best data store for the job …..........…..… 76

Recommendations ... 77
Chapter 3i: Design for evolution …..........…...… 78

Recommendations ... 78
Chapter 3j: Build for the needs of business …..........…...… 80

Recommendations ... 80
Chapter 3k: Designing resilient applications for Azure …..........…...… 82

What is resiliency? .. 82
Process to achieve resiliency .. 83
Defining your resiliency requirements ... 83
Designing for resiliency .. 87
Resiliency strategies .. 87
Resilient deployment .. 91
Monitoring and diagnostics ... 92
Manual failure responses .. 93
Summary ... 94

Chapter 4: Design your Azure application: Use these pillars of quality …..........…...................… 95
Scalability .. 96
Availability ... 98
Resiliency ... 99

Contents

v

Management and DevOps ... 100

Security ... 101
Chapter 5: Design your Azure application: Design patterns …..........…...................................… 103

Challenges in cloud development .. 103
Data Management ... 104
Design and Implementation .. 104
Messaging .. 105
Management and Monitoring .. 106
Performance and Scalability .. 107
Resiliency .. 108
Security .. 109

Chapter 6: Catalog of patterns .…..…...................................… 110
Ambassador pattern .. 110
Anti-Corruption Layer pattern .. 112
Backends for Frontends pattern ... 114
Bulkhead pattern ... 116
Cache-Aside pattern .. 119
Circuit Breaker pattern .. 124
CQRS pattern .. 132
Compensating Transaction pattern .. 139
Competing Consumers pattern ... 143
Compute Resource Consolidation pattern .. 148
Event Sourcing pattern .. 156
External Configuration Store pattern ... 162
Federated Identity pattern ... 170
Gatekeeper pattern ... 174
Gateway Aggregation pattern .. 176
Gateway Offloading pattern .. 180
Gateway Routing pattern ... 182
Health Endpoint Monitoring pattern ... 185
Index Table pattern ... 191
Leader Election pattern .. 197
Materialized View pattern .. 204
Pipes and Filters pattern ... 208
Priority Queue pattern .. 215
Queue-Based Load Leveling pattern ... 221
Retry pattern ... 224
Scheduler Agent Supervisor pattern ... 227
Sharding pattern ... 234
Sidecar pattern ... 243

Contents

vi

Static Content Hosting pattern .. 246
Strangler pattern .. 250
Throttling pattern .. 252
Valet Key pattern ... 256

Chapter 7: Design review checklists .…..…..........................… 263
DevOps checklist ... 264
Availability checklist ... 270
Scalability checklist ... 276
Resiliency checklist .. 276
Azure services ... 286

Chapter 8: Summary...…..........................… 291
Chapter 9: Azure reference architectures ..…..........................… 292

Identity management …..…..… 293
Hybrid network …...…..… 298
Network DMZ …...…...… 303
Managed web application …...…...… 306
Running Linux VM workloads …..….....................................… 310
Running Windows VM workloads …..….....................................… 315

Contents

vii

Cloud Application
Architecture
Guide
This guide presents a structured approach for designing cloud
applications that are scalable, resilient, and highly available. The guidance
in this ebook is intended to help your architectural decisions regardless
of your cloud platform, though we will be using Azure so we can share
the best practices that we have learned from many years of customer
engagements.

In the following chapters, we will guide you through a selection of important
considerations and resources to help determine the best approach for your
cloud application:

1. Choosing the right architecture style for your application based on the kind of 	
 solution you are building.

2. Choosing the most appropriate compute and data store technologies.

3. Incorporating the ten high-level design principles to ensure your application 	
 is scalable, resilient, and manageable.

4. Utilizing the five pillars of software quality to build a successful cloud
 application.

5. Applying design patterns specific to the problem you are trying to solve.

Introduction

viii

Introduction
The cloud is changing the way applications are designed. Instead of
monoliths, applications are decomposed into smaller, decentralized
services. These services communicate through APIs or by using
asynchronous messaging or eventing. Applications scale horizontally,
adding new instances as demand requires.
These trends bring new challenges. Application state is distributed. Operations are done in parallel
and asynchronously. The system as a whole must be resilient when failures occur. Deployments must
be automated and predictable. Monitoring and telemetry are critical for gaining insight into the
system. The Azure Application Architecture Guide is designed to help you navigate these changes.

The cloud is changing the way applications are designed. Instead of monoliths, applications are
decomposed into smaller, decentralized services. These services communicate through APIs or by
using asynchronous messaging or eventing. Applications scale horizontally, adding new instances as
demand requires.

These trends bring new challenges. Application state is distributed. Operations are done in parallel
and asynchronously. The system as a whole must be resilient when failures occur. Deployments must
be automated and predictable. Monitoring and telemetry are critical for gaining insight into the
system. The Cloud Application Architecture Guide is designed to help you navigate these changes.

The Cloud Application Architecture Guide is organized as a series of steps, from the architecture and
design to implementation. For each step, there is supporting guidance that will help you with the
design of your application architecture.

Traditional on-premises Modern cloud
Monolithic, centralized
Design for predictable
scalability
Relational database
Strong consistency
Serial and synchronized
processing
Design to avoid failures (MTBF)
Occasional big updates
Manual management
Snowflake servers

Decomposed, de-centralized
Design for elastic scale
Polyglot persistence (mix of storage
technologies)
Eventual consistency
Parallel and asynchronous processing
Design for failure (MTTR)
Frequent small updates
Automated self-management
Immutable infrastructure

How this guide is structured

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

ix Introduction

Architecture Styles. The first decision point is the most fundamental. What kind of architecture are
you building? It might be a microservices architecture, a more traditional N-tier application, or a big
data solution. We have identified seven distinct architecture styles. There are benefits and challenges
to each.

Azure Reference Architectures show recommended deployments in Azure, along with
considerations for scalability, availability, manageability, and security. Most also include
deployable Resource Manager templates.

Technology Choices. Two technology choices should be decided early on, because they affect the
entire architecture. These are the choice of compute and storage technologies. The term compute
refers to the hosting model for the computing resources that your applications runs on. Storage
includes databases but also storage for message queues, caches, IoT data, unstructured log data,
and anything else that an application might persist to storage.

Compute options and Storage options provide detailed comparison criteria for selecting
compute and storage services.

Design Principles. Throughout the design process, keep these ten high-level design principles in
mind.

For best practices articles that provide specific guidance on auto-scaling, caching, data
partitioning, API design, and more, go to https://docs.microsoft.com/en-us/azure/architec	
turebest-practices/index.

Pillars. A successful cloud application will focus on these five pillars of software quality: scalability,
availability, resiliency, management, and security.

Use our Design review checklists to review your design according to these quality pillars.

Cloud Design Patterns. These design patterns are useful for building reliable, scalable, and secure
applications on Azure. Each pattern describes a problem, a pattern that addresses the problem, and
an example based on Azure.

View the complete Catalog of cloud design patterns.

•

•

•

•

•

Before you get started
If you haven’t already, start an Azure free account so you can get hands on
with this ebook.

A $200 credit to use on any Azure product for 30 days.
Free access to our most popular products for 12 months, including
compute, storage networking, and database.

25+ products that are always-free.

•
•
•

Get help
from the
experts
Contact us at
aka.ms/azurespecialist

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/index
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/index
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-comparison
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-comparison
https://docs.microsoft.com/en-us/azure/architecture/guide/design-principles/index
https://docs.microsoft.com/en-us/azure/architecture/best-practices/index
https://docs.microsoft.com/en-us/azure/architecture/best-practices/index
https://docs.microsoft.com/en-us/azure/architecture/guide/pillars
https://docs.microsoft.com/en-us/azure/architecture/patterns/index?toc=/azure/architecture/guide/toc.json
https://docs.microsoft.com/en-us/azure/architecture/patterns/index
http://azure.com/free
https://azure.microsoft.com/en-us/overview/sales-number/
https://azure.microsoft.com/en-us/overview/sales-number/

1

1

Choose an
architecture style
The first decision you need to make when designing a cloud application
is the architecture. Choose the best architecture for the application you
are building based on its complexity, type of domain, if it’s an IaaS or PaaS
application, and what the application will do. Also consider the skills of
the developer and DevOps teams, and if the application has an existing
architecture.

An architecture style places constraints on the design, which guide the “shape” of an architecture
style by restricting the choices. These constraints provide both benefits and challenges for the
design. Use the information in this section to understand what the trade-offs are when adopting any
of these styles.

This section describes ten design principles to keep in mind as you build. Following these principles
will help you build an application that is more scalable, resilient, and manageable.

We have identified a set of architecture styles that are commonly found in cloud applications. The
article for each style includes:

A description and logical diagram of the style.

Recommendations for when to choose this style.

Benefits, challenges, and best practices.

A recommended deployment using relevant Azure services.

•
•
•
•

CHAPTER 1 | Choose an architecture style

2

A quick tour of the styles
This section gives a quick tour of the architecture styles that we’ve identified, along with some high-
level considerations for their use. Read more details in the linked topics.

N-tier is a traditional architecture for enterprise applications. Dependencies are managed by dividing
the application into layers that perform logical functions, such as presentation, business logic, and
data access. A layer can only call into layers that sit below it. However, this horizontal layering can be
a liability. It can be hard to introduce changes in one part of the application without touching the rest
of the application. That makes frequent updates a challenge, limiting how quickly new features can
be added.

N-tier is a natural fit for migrating existing applications that already use a layered architecture. For
that reason, N-tier is most often seen in infrastructure as a service (IaaS) solutions, or applications
that use a mix of IaaS and managed services.

N-tier

For a purely PaaS solution, consider a Web-Queue-Worker architecture. In this style, the application
has a web front end that handles HTTP requests and a back-end worker that performs CPU-intensive
tasks or long-running operations. The front end communicates to the worker through an
asynchronous message queue.

Web-queue-worker is suitable for relatively simple domains with some resource-intensive tasks. Like
N-tier, the architecture is easy to understand. The use of managed services simplifies deployment
and operations. But with complex domains, it can be hard to manage dependencies. The front end
and the worker can easily become large, monolithic components that are hard to maintain and
update. As with N-tier, this can reduce the frequency of updates and limit innovation.

Web-Queue-Worker

CHAPTER 1 | Choose an architecture style

3

If your application has a more complex domain, consider moving to a Microservices architecture. A
microservices application is composed of many small, independent services. Each service implements
a single business capability. Services are loosely coupled, communicating through API contracts.

Each service can be built by a small, focused development team. Individual services can be deployed
without a lot of coordination between teams, which encourages frequent updates. A microservice
architecture is more complex to build and manage than either N-tier or web-queue-worker. It
requires a mature development and DevOps culture. But done right, this style can lead to higher
release velocity, faster innovation, and a more resilient architecture.

Microservices

The CQRS (Command and Query Responsibility Segregation) style separates read and write
operations into separate models. This isolates the parts of the system that update data from the parts
that read the data. Moreover, reads can be executed against a materialized view that is physically
separate from the write database. That lets you scale the read and write workloads independently,
and optimize the materialized view for queries.

CQRS makes the most sense when it’s applied to a subsystem of a larger architecture. Generally,
you shouldn’t impose it across the entire application, as that will just create unneeded complexity.
Consider it for collaborative domains where many users access the same data.

CQRS

CHAPTER 1 | Choose an architecture style

4

Event-Driven Architectures use a publish-subscribe (pub-sub) model, where producers publish
events, and consumers subscribe to them. The producers are independent from the consumers, and
consumers are independent from each other.

Consider an event-driven architecture for applications that ingest and process a large volume of data
with very low latency, such as IoT solutions. This style is also useful when different subsystems must
perform different types of processing on the same event data.

Big Data and Big Compute are specialized architecture styles for workloads that fit certain specific
profiles. Big data divides a very large dataset into chunks, performing paralleling processing across
the entire set, for analysis and reporting. Big compute, also called high-performance computing
(HPC), makes parallel computations across a large number (thousands) of cores. Domains include
simulations, modeling, and 3-D rendering.

Event-Driven Architecture

Big Data, Big Compute

Architecture styles as constraints
An architecture style places constraints on the design, including the set of elements that can
appear and the allowed relationships between those elements. Constraints guide the “shape” of an
architecture by restricting the universe of choices. When an architecture conforms to the constraints
of a particular style, certain desirable properties emerge.

For example, the constraints in microservices include:

A service represents a single responsibility.

Every service is independent of the others.

Data is private to the service that owns it. Services do not share data.

•
•
•

By adhering to these constraints, what emerges is a system where services can be
deployed independently, faults are isolated, frequent updates are possible, and it’s easy to introduce
new technologies into the application.

Before choosing an architecture style, make sure that you understand the underlying principles

CHAPTER 1 | Choose an architecture style

5

Architecture style Dependency management Domain type

N-tier

Web-Queue-Worker

Microservices

CQRS

Event-driven architecture

Big data

Big compute

Horizontal tiers divided by subnet.

Front and backend jobs, decoupled by async
messaging.

Vertically (functionally) decomposed services
that call each other through APIs.

Read/write segregation. Schema and scale
are optimized separately.

Producer/consumer. Independent view per
sub-system.

Divide a huge dataset into small chunks.
Parallel processing on local datasets.

Data allocation to thousands of cores.

Traditional business domain. Frequency of
updates is low.

Relatively simple domain with some resource
intensive tasks.

Complicated domain. Frequent updates.

Collaborative domain where lots of users access
the same data.

IoT and real-time systems.

Batch and real-time data analysis. Predictive
analysis using ML.

Compute intensive domains such as simulation.

Consider challenges and benefits
Constraints also create challenges, so it’s important to understand the trade-offs when adopting any
of these styles. Do the benefits of the architecture style outweigh the challenges, for this subdomain
and bounded context?

Here are some of the types of challenges to consider when selecting an architecture style:
Complexity. Is the complexity of the architecture justified for your domain? Conversely, is
the style too simplistic for your domain? In that case, you risk ending up with a “ball of mud”,
becuase the architecture does not help you to manage dependencies cleanly.

Asynchronous messaging and eventual consistency. Asynchronous messaging can be used
to decouple services, and increase reliability (because messages can be retried) and scalability.
However, this also creates challenges such as always-once semantics and eventual consistency.

Inter-service communication. As you decompose an application into separate services, there
is a risk that communication between services will cause unacceptable latency or create network
congestion (for example, in a microservices architecture).

Manageability. How hard is it to manage the application, monitor, deploy updates, and so on?

•

•

•

•

and constraints of that style. Otherwise, you can end up with a design that conforms to the style
at a superficial level, but does not achieve the full potential of that style. It’s also important to be
pragmatic. Sometimes it’s better to relax a
constraint, rather than insist on architectural purity.

The following table summarizes how each style manages dependencies, and the types of domain that
are best suited for each.

CHAPTER 1 | Choose an architecture style

6

1a

N-tier
architecture style
An N-tier architecture divides an application into logical layers and
physical tiers.

Layers are a way to separate responsibilities and manage dependencies. Each layer has a specific
responsibility. A higher layer can use services in a lower layer, but not the other way around.

Tiers are physically separated, running on separate machines. A tier can call to another tier directly, or
use asynchronous messaging (message queue). Although each layer might be hosted in its own tier,
that’s not required. Several layers might be hosted on the same tier. Physically separating the tiers
improves scalability and resiliency, but also adds latency from the additional network communication.
A traditional three-tier application has a presentation tier, a middle tier, and a database tier. The
middle tier is optional. More complex applications can have more than three tiers. The diagram
above shows an application with two middle tiers, encapsulating different areas of functionality.

CHAPTER 1a | N-tier architecture style

7

An N-tier application can have a closed layer architecture or an open layer architecture:

In a closed layer architecture, a layer can only call the next layer immediately down
In an open layer architecture, a layer can call any of the layers below it.

A closed layer architecture limits the dependencies between layers. However, it might create
unnecessary network traffic, if one layer simply passes requests along to the next layer.

N-tier architectures are typically implemented as infrastructure-as-a-service (IaaS) applications, with
each tier running on a separate set of VMs. However, an N-tier application doesn’t need to be pure
IaaS. Often, it’s advantageous to use managed services for some parts of the architecture, particularly
caching, messaging, and data storage.

Consider an N-tier architecture for:

Simple web applications.
Migrating an on-premises application to Azure with minimal refactoring.
Unified development of on-premises and cloud applications.

N-tier architectures are very common in traditional on-premises applications, so it’s a natural fit for
migrating existing workloads to Azure.

Portability between cloud and on-premises, and between cloud platforms.
Less learning curve for most developers.
Natural evolution from the traditional application model.
Open to heterogeneous environment (Windows/Linux)

When to use this architecture

Benefits

•
•

•
•
•

•
•
•
•

Challenges
It’s easy to end up with a middle tier that just does CRUD operations on the database, adding
extra latency without doing any useful work.

Monolithic design prevents independent deployment of features.

Managing an IaaS application is more work than an application that uses only managed services.

It can be difficult to manage network security in a large system.

•

•
•
•

CHAPTER 1a | N-tier architecture style

8

Best practices
Use autoscaling to handle changes in load. See Autoscaling best practices.

Use asynchronous messaging to decouple tiers.

Cache semi-static data. See Caching best practices.

Configure database tier for high availability, using a solution such as SQL Server Always On

Availability Groups.

Place a web application firewall (WAF) between the front end and the Internet.

Place each tier in its own subnet, and use subnets as a security boundary.

Restrict access to the data tier, by allowing requests only from the middle tier(s).

•
•
•
•

•
•
•

N-tier architecture on virtual machines
This section describes a recommended N-tier architecture running on VMs.

This section describes a recommended N-tier architecture running on VMs. Each tier consists of two
or more VMs, placed in an availability set or VM scale set. Multiple VMs provide resiliency in case one
VM fails. Load balancers are used to distribute requests across the VMs in a tier. A tier can be scaled
horizontally by adding more VMs to the pool.

Each tier is also placed inside its own subnet, meaning their internal IP addresses fall within the same
address range. That makes it easy to apply network security group (NSG) rules and route tables to
individual tiers.

The web and business tiers are stateless. Any VM can handle any request for that tier. The data tier
should consist of a replicated database. For Windows, we recommend SQL Server, using Always On
Availability Groups for high availability. For Linux, choose a database that supports replication, such
as Apache Cassandra.

Network Security Groups (NSGs) restrict access to each tier. For example, the database tier only
allows access from the business tier.

CHAPTER 1a | N-tier architecture style

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/caching
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server

9

For more details and a deployable Resource Manager template, see the following reference

architectures:

Run Windows VMs for an N-tier application

Run Linux VMs for an N-tier application

N-tier architectures are not restricted to three tiers. For more complex applications, it is common
to have more tiers. In that case, consider using layer-7 routing to route requests to a particular
tier.

Tiers are the boundary of scalability, reliability, and security. Consider having separate tiers for
services with different requirements in those areas.

Use VM Scale Sets for autoscaling.

Look for places in the architecture where you can use a managed service without significant
refactoring. In particular, look at caching, messaging, storage, and databases.

For higher security, place a network DMZ in front of the application. The DMZ includes network
virtual appliances (NVAs) that implement security functionality such as firewalls and packet
inspection. For more information, see Network DMZ reference architecture.
For high availability, place two or more NVAs in an availability set, with an external load balancer
to distribute Internet requests across the instances. For more information, see Deploy highly
available network virtual appliances.

Do not allow direct RDP or SSH access to VMs that are running application code. Instead,
operators should log into a jumpbox, also called a bastion host. This is a VM on the network that
administrators use to connect to the other VMs. The jumpbox has an NSG that allows RDP or SSH
only from approved public IP addresses.

You can extend the Azure virtual network to your on-premises network using a site-to-site
virtual private network (VPN) or Azure ExpressRoute. For more information, see Hybrid network
reference architecture.

If your organization uses Active Directory to manage identity, you may want to extend your
Active Directory environment to the Azure VNet. For more information, see Identity management
reference architecture.

If you need higher availability than the Azure SLA for VMs provides, replicate the application
across two regions and use Azure Traffic Manager for failover. For more information, see Run
Windows VMs in multiple regions or Run Linux VMs in multiple regions.

Additional considerations

•
•

•

•

•
•

•

•

•

•

•

•

CHAPTER 1a | N-tier architecture style

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/n-tier
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-linux/n-tier
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/nva-ha
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/nva-ha
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/identity/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/identity/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/multi-region-application
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/multi-region-application
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-linux/multi-region-application

10

1b

Web-Queue-
Worker
architecture style
The core components of this architecture are a web front end that serves
client requests, and a worker that performs resource-intensive tasks, long-
running workflows, or batch jobs. The web front end communicates with
the worker through a message queue.

Other components that are commonly incorporated into this architecture include:

One or more databases.
A cache to store values from the database for quick reads.
CDN to serve static content.

•
•
•

CHAPTER 1b | Web-Queue-Worker architecture style

11

The web and worker are both stateless. Session state can be stored in a distributed cache. Any long-
running work is done asynchronously by the worker. The worker can be triggered by messages on the
queue, or run on a schedule for batch processing. The worker is an optional component. If there are
no long-running operations, the worker can be omitted.

The front end might consist of a web API. On the client side, the web API can be consumed by a
single-page application that makes AJAX calls, or by a native client application.

The Web-Queue-Worker architecture is typically implemented using managed compute services,
either Azure App Service or Azure Cloud Services.

Consider this architecture style for:
Applications with a relatively simple domain.
Applications with some long-running workflows or batch operations.
When you want to use managed services, rather than infrastructure as a service (IaaS).

When to use this architecture

Benefits

Best practices

Challenges

Relatively simple architecture that is easy to understand.
Easy to deploy and manage.
Clear separation of concerns.
The front end is decoupled from the worker using asynchronous messaging.
The front end and the worker can be scaled independently.

Use polyglot persistence when appropriate. See Use the best data store for the job.

For best practices articles that provide specific guidance on auto-scaling, caching, data
partitioning, API design, and more, go to https://docs.microsoft.com/en-us/azure/architecture/
best-practices/index.

Without careful design, the front end and the worker can become large, monolithic components
that are difficult to maintain and update.

There may be hidden dependencies, if the front end and worker share data schemas or code
modules.

•
•
•

•
•
•
•
•

•

•

•
•

CHAPTER 1b | Web-Queue-Worker architecture style

https://docs.microsoft.com/en-us/azure/architecture/guide/design-principles/use-the-best-data-store
https://docs.microsoft.com/en-us/azure/architecture/best-practices/index.
https://docs.microsoft.com/en-us/azure/architecture/best-practices/index.

12

Web-Queue-Worker on Azure App Service
This section describes a recommended Web-Queue-Worker architecture that uses Azure App Service.

The front end is implemented as an Azure App Service web app, and the worker is implemented as
a WebJob. The web app and the WebJob are both associated with an App Service plan that provides
the VM instances.

You can use either Azure Service Bus or Azure Storage queues for the message queue. (The diagram
shows an Azure Storage queue.)

Azure Redis Cache stores session state and other data that needs low latency access.

Azure CDN is used to cache static content such as images, CSS, or HTML.

For storage, choose the storage technologies that best fit the needs of the application. You might use
multiple storage technologies (polyglot persistence). To illustrate this idea, the diagram shows Azure
SQL Database and Azure Cosmos DB.

For more details, see Managed web application reference architecture.

Not every transaction has to go through the queue and worker to storage. The web front end can
perform simple read/write operations directly. Workers are designed for resource-intensive tasks
or long-running workflows. In some cases, you might not need a worker at all.

Use the built-in autoscale feature of App Service to scale out the number of VM instances. If the
load on the application follows predictable patterns, use schedule-based autoscale. If the load is
unpredictable, use metrics-based autoscaling rules.

Additional considerations
•

•

CHAPTER 1b | Web-Queue-Worker architecture style

13

Consider putting the web app and the WebJob into separate App Service plans. That way, they
are hosted on separate VM instances and can be scaled independently.

Use separate App Service plansa for production and testing. Otherwise, if you use the same plan
for production and testing, it means your tests are running on your production VMs.

Use deployment slots to manage deployments. This lets you to deploy an updated version to
a staging slot, then swap over to the new version. It also lets you swap back to the previous
version, if there was a problem with the update.

•

•

CHAPTER 1b | Web-Queue-Worker architecture style

•

14

1c

Microservices
architecture style
A microservices architecture consists of a collection of small, autonomous
services. Each service is self-contained and should implement a single
business capability.

In some ways, microservices are the natural evolution of service oriented architectures (SOA), but
there are differences between microservices and SOA. Here are some defining characteristics of a
microservice:

In a microservices architecture, services are small, independent, and loosely coupled.

Each service is a separate codebase, which can be managed by a small development team.

Services can be deployed independently. A team can update an existing service without
rebuilding and redeploying the entire application.

Services are responsible for persisting their own data or external state. This differs from the
traditional model, where a separate data layer handles data persistence.

•
•

•

•

CHAPTER 1c | Microservices architecture style

15

Services communicate with each other by using well-defined APIs. Internal implementation
details of each service are hidden from other services.

Services don’t need to share the same technology stack, libraries, or frameworks.

•

•

Besides for the services themselves, some other components appear in a typical microservices
architecture:

Management. The management component is responsible for placing services on nodes, identifying
failures, rebalancing services across nodes, and so forth.

Service Discovery. Maintains a list of services and which nodes they are located on. Enables service
lookup to find the endpoint for a service.

API Gateway. The API gateway is the entry point for clients. Clients don’t call services directly.
Instead, they call the API gateway, which forwards the call to the appropriate services on the
back end. The API gateway might aggregate the responses from several services and return the
aggregated response.

The advantages of using an API gateway include:

It decouples clients from services. Services can be versioned or refactored without needing to
update all of the clients.

Services can use messaging protocols that are not web friendly, such as AMQP.

The API Gateway can perform other cross-cutting functions such as authentication, logging, SSL
termination, and load balancing.

Consider this architecture style for:

Large applications that require a high release velocity.

Complex applications that need to be highly scalable.

Applications with rich domains or many subdomains.

An organization that consists of small development teams.

When to use this architecture

•

•
•

•
•
•
•

Independent deployments. You can update a service without redeploying the entire application,
and roll back or roll forward an update if something goes wrong. Bug fixes and feature releases
are more manageable and less risky.

Independent development. A single development team can build, test, and deploy a service.
The result is continuous innovation and a faster release cadence.

Benefits
•

•

CHAPTER 1c | Microservices architecture style

16

Small, focused teams. Teams can focus on one service. The smaller scope of each service makes
the code base easier to understand, and it’s easier for new team members to ramp up.

Fault isolation. If a service goes down, it won’t take out the entire application. However, that
doesn’t mean you get resiliency for free. You still need to follow resiliency best practices and
design patterns. See Designing resilient applications for Azure.

Mixed technology stacks. Teams can pick the technology that best fits their service.

Granular scaling. Services can be scaled independently. At the same time, the higher density
of services per VM means that VM resources are fully utilized. Using placement constraints, a
services can be matched to a VM profile (high CPU, high memory, and so on).

•

•

•
•

Challenges
Complexity. A microservices application has more moving parts than the equivalent monolithic
application. Each service is simpler, but the entire system as a whole is more complex.

Development and test. Developing against service dependencies requires a different approach.
Existing tools are not necessarily designed to work with service dependencies. Refactoring across
service boundaries can be difficult. It is also challenging to test service dependencies, especially
when the application is evolving quickly.

Lack of governance. The decentralized approach to building microservices has advantages, but
it can also lead to problems. You may end up with so many different languages and frameworks
that the application becomes hard to maintain. It may be useful to put some project-wide
standards in place, without overly restricting teams’ flexibility. This especially applies to cross-
cutting functionality such as logging.

Network congestion and latency. The use of many small, granular services can result in more
interservice communication. Also, if the chain of service dependencies gets too long (service A
calls B, which calls C...), the additional latency can become a problem. You will need to design
APIs carefully. Avoid overly chatty APIs, think about serialization formats, and look for places to
use asynchronous communication patterns.

Data integrity. With each microservice responsible for its own data persistence. As a result, data
consistency can be a challenge. Embrace eventual consistency where possible.

Management. To be successful with microservices requires a mature DevOps culture. Correlated
logging across services can be challenging. Typically, logging must correlate multiple service calls
for a single user operation.

Versioning. Updates to a service must not break services that depend on it. Multiple services
could be updated at any given time, so without careful design, you might have problems with
backward or forward compatibility.

Skillset. Microservices are highly distributed systems. Carefully evaluate whether the team has
the skills and experience to be successful.

•

•

•

•

•

•

•

•

CHAPTER 1c | Microservices architecture style

17

Best practices
Model services around the business domain.

Decentralize everything. Individual teams are responsible for designing and building services.
Avoid sharing code or data schemas.

Data storage should be private to the service that owns the data. Use the best storage for each
service and data type.

Services communicate through well-designed APIs. Avoid leaking implementation details. APIs
should model the domain, not the internal implementation of the service.

Avoid coupling between services. Causes of coupling include shared database schemas and rigid
communication protocols.

Offload cross-cutting concerns, such as authentication and SSL termination, to the gateway.

Keep domain knowledge out of the gateway. The gateway should handle and route client
requests without any knowledge of the business rules or domain logic. Otherwise, the gateway
becomes a dependency and can cause coupling between services.

Services should have loose coupling and high functional cohesion. Functions that are likely
to change together should be packaged and deployed together. If they reside in separate
services, those services end up being tightly coupled, because a change in one service will
require updating the other service. Overly chatty communication between two services may be a
symptom of tight coupling and low cohesion.

Isolate failures. Use resiliency strategies to prevent failures within a service from cascading. See
designing resilient applications.

For a list and summary of the resiliency patterns available in Azure, go to https://docs.microsoft.com/
en-us/azure/architecture/patterns/category/resiliency.

•
•

•

•

•

•
•

•

•

CHAPTER 1c | Microservices architecture style

https://docs.microsoft.com/en-us/azure/architecture/resiliency/index
https://docs.microsoft.com/en-us/azure/architecture/resiliency/index
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency

18

You can use Azure Container Service to configure and provision a Docker cluster. Azure Container
Services supports several popular container orchestrators, including Kubernetes, DC/OS, and Docker
Swarm.

Microservices using Azure Container
Service

Public nodes. These nodes are reachable through a public-facing load balancer. The API gateway is
hosted on these nodes.

Backend nodes. These nodes run services that clients reach via the API gateway. These nodes don’t
receive Internet traffic directly. The backend nodes might include more than one pool of VMs, each
with a different hardware profile. For example, you could create separate pools for general compute
workloads, high CPU workloads, and high memory workloads.

Management VMs. These VMs run the master nodes for the container orchestrator.

Networking. The public nodes, backend nodes, and management VMs are placed in separate
subnets within the same virtual network (VNet).

Load balancers. An externally facing load balancer sits in front of the public nodes. It distributes
internet requests to the public nodes. Another load balancer is placed in front of the management
VMs, to allow secure shell (ssh) traffic to the management VMs, using NAT rules.

For reliability and scalability, each service is replicated across multiple VMs. However, because
services are also relatively lightweight (compared with a monolithic application), multiple services
are usually packed into a single VM. Higher density allows better resource utilization. If a particular
service doesn’t use a lot of resources, you don’t need to dedicate an entire VM to running that
service.

CHAPTER 1c | Microservices architecture style

19

The following diagram shows three nodes running four different services (indicated by different
shapes). Notice that each service has at least two instances.

The following diagram shows a microservices architecture using Azure Service Fabric.

The Service Fabric Cluster is deployed to one or more VM scale sets. You might have more than one
VM scale set in the cluster, in order to have a mix of VM types. An API Gateway is placed in front of
the Service Fabric cluster, with an external load balancer to receive client requests.

The Service Fabric runtime performs cluster management, including service placement, node failover,
and health monitoring. The runtime is deployed on the cluster nodes themselves. There isn’t a
separate set of cluster management VMs.

Services communicate with each other using the reverse proxy that is built into Service Fabric. Service
Fabric provides a discovery service that can resolve the endpoint for a named service.

Microservices using Azure Service Fabric

CHAPTER 1c | Microservices architecture style

20

1d

CQRS
architecture style
Command and Query Responsibility Segregation (CQRS) is an architecture
style that separates read operations from write operations.

In traditional architectures, the same data model is used to query and update a database. That’s
simple and works well for basic CRUD operations. In more complex applications, however, this
approach can become unwieldy. For example, on the read side, the application may perform many
different queries, returning data transfer objects (DTOs) with different shapes. Object mapping can
become complicated. On the write side, the model may implement complex validation and business
logic. As a result, you can end up with an overly complex model that does too much.

Another potential problem is that read and write workloads are often asymmetrical, with very
different performance and scale requirements.

CQRS addresses these problems by separating reads and writes into separate models, using
commands to update data, and queries to read data.

Commands should be task based, rather than data centric. (“Book hotel room,” not “set
ReservationStatus to Reserved.”) Commands may be placed on a queue for asynchronous
processing, rather than being processed synchronously.

Queries never modify the database. A query returns a DTO that does not encapsulate any domain
knowledge.

•

•

CHAPTER 1d | CQRS architecture style

21

For greater isolation, you can physically separate the read data from the write data. In that case, the
read database can use its own data schema that is optimized for queries. For example, it can store a
materialized view of the data, in order to avoid complex joins or complex O/RM mappings. It might
even use a different type of data store. For example, the write database might be relational, while the
read database is a document database.

If separate read and write databases are used, they must be kept in sync. Typically this is
accomplished by having the write model publish an event whenever it updates the database.
Updating the database and publishing the event must occur in a single transaction.

Some implementations of CQRS use the Event Sourcing pattern. With this pattern, application state
is stored as a sequence of events. Each event represents a set of changes to the data. The current
state is constructed by replaying the events. In a CQRS context, one benefit of Event Sourcing is that
the same events can be used to notify other components — in particular, to notify the read model.
The read model uses the events to create a snapshot of the current state, which is more efficient for
queries. However, Event Sourcing adds complexity to the design.

Consider CQRS for collaborative domains where many users access the same data, especially when
the read and write workloads are asymmetrical.

CQRS is not a top-level architecture that applies to an entire system. Apply CQRS only to those
subsystems where there is clear value in separating reads and writes. Otherwise, you are creating
additional complexity for no benefit.

When to use this architecture

Independently scaling. CQRS allows the read and write workloads to scale independently, and
may result in fewer lock contentions.

Optimized data schemas. The read side can use a schema that is optimized for queries, while
the write side uses a schema that is optimized for updates.

Security. It’s easier to ensure that only the right domain entities are performing writes on the
data.

Benefits
•

•

•

CHAPTER 1d | CQRS architecture style

22

Separation of concerns. Segregating the read and write sides can result in models that are more
maintainable and flexible. Most of the complex business logic goes into the write model. The
read model can be relatively simple.

Simpler queries. By storing a materialized view in the read database, the application can avoid
complex joins when querying.

•

•

•

•

•

Complexity. The basic idea of CQRS is simple. But it can lead to a more complex application
design, especially if they include the Event Sourcing pattern.

Messaging. Although CQRS does not require messaging, it’s common to use messaging to
process commands and publish update events. In that case, the application must handle message
failures or duplicate messages.

Eventual consistency. If you separate the read and write databases, the read data may be stale.

Challenges

For more information about implementing CQRS, go to https://docs.microsoft.com/en-us/azure/
architecture/patterns/cqrs.

For information about using the Event Sourcing pattern to avoid update conflicts, go to https://
docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing.

For information about using the Materialized View pattern for the read model, to optimize
the schema for queries, go to https://docs.microsoft.com/en-us/azure/architecture/patterns/
materialized-view.

Best practices

CQRS can be especially useful in a microservices architecture. One of the principles of microservices
is that a service cannot directly access another service’s data store.

CQRS in microservices

•

•

•

CHAPTER 1d | CQRS architecture style

https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs.
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs.
https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing.
https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing.
https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view.
https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view.
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

23

In the following diagram, Service A writes to a data store, and Service B keeps a materialized view of
the data. Service A publishes an event whenever it writes to the data store. Service B subscribes to
the event.

CHAPTER 1d | CQRS architecture style

24

1e

Event-driven
architecture style
An event-driven architecture consists of event producers that generate a
stream of events, and event consumers that listen for the events.

Events are delivered in near real time, so consumers can respond immediately to events as they
occur. Producers are decoupled from consumers — a producer doesn’t know which consumers are
listening. Consumers are also decoupled from each other, and every consumer sees all of the events.
This differs from a Competing Consumers pattern, where consumers pull messages from a queue and
a message is processed just once (assuming no errors). In some systems, such as IoT, events must be
ingested at very high volumes.

An event driven architecture can use a pub/sub model or an event stream model.

Pub/sub: The messaging infrastructure keeps track of subscriptions. When an event is published,
it sends the event to each subscriber. After an event is received, it cannot be replayed, and new
subscribers do not see the event.

Event streaming: Events are written to a log. Events are strictly ordered (within a partition) and
durable. Clients don’t subscribe to the stream, instead a client can read from any part of the
stream. The client is responsible for advancing its position in the stream. That means a client can
join at any time, and can replay events.

•

•

CHAPTER 1e | Event-driven architecture style

25

On the consumer side, there are some common variations:

Simple event processing. An event immediately triggers an action in the consumer. For
example, you could use Azure Functions with a Service Bus trigger, so that a function executes
whenever a message is published to a Service Bus topic.

Complex event processing. A consumer processes a series of events, looking for patterns in the
event data, using a technology such as Azure Stream Analytics or Apache Storm. For example,
you could aggregate readings from an embedded device over a time window, and generate a
notification if the moving average crosses a certain threshold.

Event stream processing. Use a data streaming platform, such as Azure IoT Hub or Apache
Kafka, as a pipeline to ingest events and feed them to stream processors. The stream processors
act to process or transform the stream. There may be multiple stream processors for different
subsystems of the application. This approach is a good fit for IoT workloads.

The source of the events may be external to the system, such as physical devices in an IoT solution. In
that case, the system must be able to ingest the data at the volume and throughput that is required
by the data source.

In the logical diagram above, each type of consumer is shown as a single box. In practice, it’s
common to have multiple instances of a consumer, to avoid having the consumer become a single
point of failure in system. Multiple instances might also be necessary to handle the volume and
frequency of events. Also, a single consumer might process events on multiple threads. This can
create challenges if events must be processed in order, or require exactly-once semantics. See
Minimize Coordination.

Multiple subsystems must process the same events.
Real-time processing with minimum time lag.
Complex event processing, such as pattern matching or aggregation over time windows.
High volume and high velocity of data, such as IoT.

When to use this architecture

•

•

•

•
•
•
•

•
•
•
•
•

Producers and consumers are decoupled.
No point-to point-integrations. It’s easy to add new consumers to the system.
Consumers can respond to events immediately as they arrive.
Highly scalable and distributed.
Subsystems have independent views of the event stream.

Guaranteed delivery. In some systems, especially in IoT scenarios, it’s crucial to guarantee that
events are delivered.

Processing events in order or exactly once. Each consumer type typically runs in multiple
instances, for resiliency and scalability. This can create a challenge if the events must be
processed in order (within a consumer type), or if the processing logic is not idempotent.

Benefits

Challenges
•

•

CHAPTER 1e | Event-driven architecture style

26

Event-driven architectures are central to IoT solutions. The following diagram shows a possible logical
architecture for IoT. The diagram emphasizes the event-streaming components of the architecture.

The cloud gateway ingests device events at the cloud boundary, using a reliable, low latency
messaging system.

Devices might send events directly to the cloud gateway, or through a field gateway. A field gateway
is a specialized device or software, usually colocated with the devices, that receives events and
forwards them to the cloud gateway. The field gateway might also preprocess the raw device events,
performing functions such as filtering, aggregation, or protocol transformation.

After ingestion, events go through one or more stream processors that can route the data (for
example, to storage) or perform analytics and other processing.
The following are some common types of processing. (This list is certainly not exhaustive.)

IoT architecture

Writing event data to cold storage, for archiving or batch analytics.

Hot path analytics, analyzing the event stream in (near) real time, to detect anomalies, recognize
patterns over rolling time windows, or triggera alerts when a specific condition occurs in the
stream.

Handling special types of non-telemetry messages from devices, such as notifications and alarms.
Machine learning.

•
•

•

The boxes that are shaded gray show components of an IoT system that are not directly related to
event streaming, but are included here for completeness.

The device registry is a database of the provisioned devices, including the device IDs and usually
device metadata, such as location.

The provisioning API is a common external interface for provisioning and registering new
devices.

Some IoT solutions allow command and control messages to be sent to devices.

•

•

•

This section has presented a very high-level view of IoT, and there are many subtleties and challenges
to consider. For more information and a detailed reference architecture, go to https://azure.microsoft.
com/en-us/updates/microsoft-azure-iot-reference-architecture-available/ (PDF download).

CHAPTER 1e | Event-driven architecture style

https://azure.microsoft.com/en-us/updates/microsoft-azure-iot-reference-architecture-available/ (PDF download)
https://azure.microsoft.com/en-us/updates/microsoft-azure-iot-reference-architecture-available/ (PDF download)

27

1f

Big data
architecture style
A big data architecture is designed to handle the ingestion, processing,
and analysis of data that is too large or complex for traditional database
systems.

•

•

Big data solutions typically involve one or more of the following types of workload:

Batch processing of big data sources at rest.
Real-time processing of big data in motion.
Interactive exploration of big data.
Predictive analytics and machine learning.

Most big data architectures include some or all of the following components:

Data sources: All big data solutions start with one or more data sources. Examples include:
	 • Application data stores, such as relational databases.
	 • Static files produced by applications, such as web server log files.
	 • Real-time data sources, such as IoT devices.

Data storage: Data for batch processing operations is typically stored in a distributed file store
that can hold high volumes of large files in various formats. This kind of store is often called
a data lake. Options for implementing this storage include Azure Data Lake Store or blob
containers in Azure Storage.

•
•
•
•

CHAPTER 1f | Big data architecture style

28

Batch processing. Since the data sets are so large, often a big data solution must process data
files using long-running batch jobs to filter, aggregate, and otherwise prepare the data for
analysis. Usually these jobs involve reading source files, processing them, and writing the output
to new files. Options include running U-SQL jobs in Azure Data Lake Analytics, using Hive, Pig,
or custom Map/Reduce jobs in an HDInsight Hadoop cluster, or using Java, Scala, or Python
programs in an HDInsight Spark cluster.

Real-time message ingestion. If the solution includes real-time sources, the architecture must
include a way to capture and store real-time messages for stream processing. This might be a
simple data store, where incoming messages are dropped into a folder for processing. However,
many solutions need a message ingestion store to act as a buffer for messages, and to support
scale-out processing, reliable delivery, and other message queuing semantics. Options include
Azure Event Hubs, Azure IoT Hubs, and Kafka.

Stream processing. After capturing real-time messages, the solution must process them by
filtering, aggregating, and otherwise preparing the data for analysis. The processed stream data
is then written to an output sink. Azure Stream Analytics provides a managed stream processing
service based on perpetually running SQL queries that operate on unbounded streams. You
can also use open source Apache streaming technologies like Storm and Spark Streaming in an
HDInsight cluster.

Analytical data store. Many big data solutions prepare data for analysis and then serve the
processed data in a structured format that can be queried using analytical tools. The analytical
data store used to serve these queries can be a Kimball-style relational data warehouse, as seen
in most traditional business intelligence (BI) solutions. Alternatively, the data could be presented
through a low-latency NoSQL technology such as HBase, or an interactive Hive database
that provides a metadata abstraction over data files in the distributed data store. Azure SQL
Data Warehouse provides a managed service for large-scale, cloud-based data warehousing.
HDInsight supports Interactive Hive, HBase, and Spark SQL, which can also be used to serve data
for analysis.

Analysis and reporting. The goal of most big data solutions is to provide insights into the data
through analysis and reporting. To empower users to analyze the data, the architecture may
include a data modeling layer, such as a multidimensional OLAP cube or tabular data model in
Azure Analysis Services. It might also support self-service BI, using the modeling and visualization
technologies in Microsoft Power BI or Microsoft

Excel. Analysis and reporting can also take the form of interactive data exploration by data
scientists or data analysts. For these scenarios, many Azure services support analytical notebooks,
such as Jupyter, enabling these users to leverage their existing skills with Python or R. For large-
scale data exploration, you can use Microsoft R Server, either standalone or with Spark.

Orchestration. Most big data solutions consist of repeated data processing operations,
encapsulated in workflows, that transform source data, move data between multiple sources
and sinks, load the processed data into an analytical data store, or push the results straight to
a report or dashboard. To automate these workflows, you can use an orchestration technology
such Azure Data Factory or Apache Oozie and Sqoop.

•

•

•

•

•

•

•

Azure includes many services that can be used in a big data architecture. They fall roughly into two
categories:

Managed services, including Azure Data Lake Store, Azure Data Lake Analytics, Azure Data
Warehouse, Azure Stream Analytics, Azure Event Hub, Azure IoT Hub, and Azure Data Factory.

•

CHAPTER 1f | Big data architecture style

29

Open source technologies based on the Apache Hadoop platform, including HDFS, HBase, Hive,
Pig, Spark, Storm, Oozie, Sqoop, and Kafka. These technologies are available on Azure in the
Azure HDInsight service.

These options are not mutually exclusive, and many solutions combine open source technologies
with Azure services.

•

Technology choices. You can mix and match Azure managed services and Apache technologies
in HDInsight clusters, to capitalize on existing skills or technology investments.

Performance through parallelism. Big data solutions take advantage of parallelism, enabling
high-performance solutions that scale to large volumes of data.

Elastic scale. All of the components in the big data architecture support scale-out provisioning,
so that you can adjust your solution to small or large workloads, and pay only for the resources
that you use.

Interoperability with existing solutions. The components of the big data architecture are also
used for IoT processing and enterprise BI solutions, enabling you to create an integrated solution
across data workloads.

Complexity. Big data solutions can be extremely complex, with numerous components to handle
data ingestion from multiple data sources. It can be challenging to build, test, and troubleshoot
big data processes. Moreover, there may be a large number of configuration settings across
multiple systems that must be used in order to optimize performance.

Skillset. Many big data technologies are highly specialized, and use frameworks and languages
that are not typical of more general application architectures. On the other hand, big data
technologies are evolving new APIs that build on more established languages. For example, the
U-SQL language in Azure Data Lake Analytics is based on a combination of Transact-SQL and C#.
Similarly, SQL-based APIs are available for Hive, HBase, and Spark.

Technology maturity. Many of the technologies used in big data are evolving. While core
Hadoop technologies such as Hive and Pig have stabilized, emerging technologies such as Spark
introduce extensive changes and enhancements with each new release. Managed services such
as Azure Data Lake Analytics and Azure Data Factory are relatively young, compared with other
Azure services, and will likely evolve over time.

Security. Big data solutions usually rely on storing all static data in a centralized data lake.
Securing access to this data can be challenging, especially when the data must be ingested and
consumed by multiple applications and platforms.

Benefits

Challenges

•

•

•

•

•

•

•

•

CHAPTER 1f | Big data architecture style

30

Leverage parallelism. Most big data processing technologies distribute the workload across
multiple processing units. This requires that static data files are created and stored in a splittable
format. Distributed file systems such as HDFS can optimize read and write performance, and the
actual processing is performed by multiple cluster nodes in parallel, which reduces overall job
times.

Partition data. Batch processing usually happens on a recurring schedule — for example, weekly
or monthly. Partition data files, and data structures such as tables, based on temporal periods
that match the processing schedule. That simplifies data ingestion and job scheduling, and
makes it easier to troubleshoot failures. Also, partitioning tables that are used in Hive, U-SQL, or
SQL queries can significantly improve query performance.

Apply schema-on-read semantics. Using a data lake lets you to combine storage for files in
multiple formats, whether structured, semi-structured, or unstructured. Use schema-on-read
semantics, which project a schema onto the data when the data is processing, not when the data
is stored. This builds flexibility into the solution, and prevents bottlenecks during data ingestion
caused by data validation and type checking.

Process data in-place. Traditional BI solutions often use an extract, transform, and load (ETL)
process to move data into a data warehouse. With larger volumes data, and a greater variety of
formats, big data solutions generally use variations of ETL, such as transform, extract, and load
(TEL). With this approach, the data is processed within the distributed data store, transforming it
to the required structure, before moving the transformed data into an analytical data store.

Balance utilization and time costs. For batch processing jobs, it’s important to consider two
factors: The per-unit cost of the compute nodes, and the per-minute cost of using those nodes
to complete the job. For example, a batch job may take eight hours with four cluster nodes.
However, it might turn out that the job uses all four nodes only during the first two hours, and
after that, only two nodes are required. In that case, running the entire job on two nodes would
increase the total job time, but would not double it, so the total cost would be less. In some
business scenarios, a longer processing time may be preferable to the higher cost of using
under-utilized cluster resources.

Separate cluster resources. When deploying HDInsight clusters, you will normally achieve better
performance by provisioning separate cluster resources for each type of workload. For example,
although Spark clusters include Hive, if you need to perform extensive processing with both
Hive and Spark, you should consider deploying separate dedicated Spark and Hadoop clusters.
Similarly, if you are using HBase and Storm for low latency stream processing and Hive for batch
processing, consider separate clusters for Storm, HBase, and Hadoop.

Orchestrate data ingestion. In some cases, existing business applications may write data files
for batch processing directly into Azure storage blob containers, where they can be consumed by
HDInsight or Azure Data Lake Analytics. However, you will often need to orchestrate the ingestion
of data from on-premises or external data sources into the data lake. Use an orchestration
workflow or pipeline, such as those supported by Azure Data Factory or Oozie, to achieve this in
a predictable and centrally manageable fashion.

Scrub sensitive data early. The data ingestion workflow should scrub sensitive data early in the
process, to avoid storing it in the data lake.

Best practices
•

•

•

•

•

•

•

•

CHAPTER 1f | Big data architecture style

31

1g

Big compute
architecture style

•
•

•

The term big compute describes large-scale workloads that require a
large number of cores, often numbering in the hundreds or thousands.
Scenarios include image rendering, fluid dynamics, financial risk modeling,
oil exploration, drug design, and engineering stress analysis, among
others.

Here are some typical characteristics of big compute applications:

The work can be split into discrete tasks, which can be run across many cores simultaneously.

Each task is finite. It takes some input, does some processing, and produces output. The entire
application runs for a finite amount of time (minutes to days). A common pattern is to provision a
large number of cores in a burst, and then spin down to zero once the application completes.

The application does not need to stay up 24/7. However, the system must handle node failures or
application crashes.

For some applications, tasks are independent and can run in parallel. In other cases, tasks are
tightly coupled, meaning they must interact or exchange intermediate results. In that case,
consider using high-speed networking technologies such as InfiniBand and remote direct
memory access (RDMA).

Depending on your workload, you might use compute-intensive VM sizes (H16r, H16mr, and A9).

•

•

CHAPTER 1g | Big compute architecture style

32

Computationally intensive operations such as simulation and number crunching.

Simulations that are computationally intensive and must be split across CPUs in multiple
computers (10-1000s).

Simulations that require too much memory for one computer, and must be split across multiple
computers.

Long-running computations that would take too long to complete on a single computer.

Smaller computations that must be run 100s or 1000s of times, such as Monte Carlo simulations.

High performance with “embarrassingly parallel” processing.

Can harness hundreds or thousands of computer cores to solve large problems faster.

Access to specialized high-performance hardware, with dedicated high-speed InfiniBand
networks.

You can provision VMs as needed to do work, and then tear them down.

Managing the VM infrastructure.

Managing the volume of number crunching.

Provisioning thousands of cores in a timely manner.

For tightly coupled tasks, adding more cores can have diminishing returns. You may need to
experiment to find the optimum number of cores.

When to use this architecture

Benefits

Challenges

•
•

•

•

•

•
•
•

•

•
•

•
•

CHAPTER 1g | Big compute architecture style

33

Azure Batch is a managed service for running large-scale high-performance computing (HPC)
applications.

Using Azure Batch, you configure a VM pool, and upload the applications and data files. Then the
Batch service provisions the VMs, assign tasks to the VMs, runs the tasks, and monitors the progress.
Batch can automatically scale out the VMs in response to the workload. Batch also provides job
scheduling.

You can use Microsoft HPC Pack to administer a cluster of VMs, and schedule and monitor HPC jobs.
With this approach, you must provision and manage the VMs and network infrastructure. Consider
this approach if you have existing HPC workloads and want to move some or all it to Azure. You can
move the entire HPC cluster to Azure, or keep your HPC cluster on-premises but use Azure for burst
capacity. For more information, see Batch and HPC solutions for large-scale computing workloads.

Big compute using Azure Batch

Big compute running on Virtual Machines

HPC Pack deployed to Azure
In this scenario, the HPC cluster is created entirely within Azure.

The head node provides management and job scheduling services to the cluster. For tightly coupled
tasks, use an RDMA network that provides very high bandwidth, low latency communication between
VMs. For more information see Deploy an HPC Pack 2016 cluster in Azure.

CHAPTER 1g | Big compute architecture style

34

In this scenario, an organization is running HPC Pack on-premises, and uses Azure VMs for burst
capacity. The cluster head node is on-premises. ExpressRoute or VPN Gateway connects the on-
premises network to the Azure VNet.

Burst an HPC cluster to Azure

CHAPTER 1g | Big compute architecture style

35

2

Choose compute
and data store
technologies

•

•

Choose the right technologies for Azure applications.
When designing a solution for Azure, there are two technology choices that you should make early in
the design process, because they affect the entire architecture. These are the choice of compute and
data store technologies.

Your compute option is which hosting model you choose for the computing resources that your
application runs on. Broadly, the choice is between Infrastructure-as-a-Service (IaaS), Platform-as-
a-Service (PaaS), or Functions-as-a-Service (FaaS), and the spectrum in between. There are seven
main compute options currently available in Azure for you to choose from. To make your choice,
consider the appropriate features and limitations of the service, availability and scalability, cost, and
considerations for DevOps. The comparison tables in this section will help you narrow down your
choices.

The data store includes any kind of data your application needs to manage, ingest, generate, or
that users create. Business data, caches, IoT data, telemetry, and unstructured log data are the most
common types, and applications often contain more than one data type. Different data types have
different processing requirements, and so you need to choose the right store for each type for the
best results. Some data store technologies support multiple storage models. Use the information in
this section to first choose which storage model is best suited for your requirements. Then consider
a particular data store within that category, based on factors such as feature set, cost, and ease of
management.

This section of the Application Architecture Guide contains the following topics:

Compute options overview introduces some general considerations for choosing a compute
service in Azure.

Criteria for choosing a compute option compares specific Azure compute services across several
axes, including hosting model, DevOps, availability, and scalability.

CHAPTER 2 | Choose compute and data store technologies

https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-comparison

36

Choose the right data store describes the major categories of data store technologies, including
RDBMS, key-value store, document database, graph database, and others.

Comparison criteria for choosing a data store describes some of the factors to consider when
choosing a data store.

For more information about these compute options, go to: https://docs.microsoft.com/en-us/
azure/#pivot=services.

•

•

https://docs.microsoft.com/en-us/azure/#pivot=services
https://docs.microsoft.com/en-us/azure/#pivot=services

37

2a

Overview of
compute options
The term compute refers to the hosting model for the computing
resources that your application runs on.
At one end of the spectrum is Intrastructure-as-a-Service (IaaS). With IaaS, you provision the VMs
that you need, along with associated network and storage components. Then you deploy whatever
software and applications you want onto those VMs. This model is the closest to a traditional on-
premises environment, except that Microsoft manages the infrastructure. You still manage the
individual VMs.

Platform-as-a-Service (PaaS) provides a managed hosting environment, where you can deploy
your application without needing to manage VMs or networking resources. For example, instead of
creating individual VMs, you specify an instance count, and the service will provision, configure, and
manage the necessary resources. Azure App Service is an example of a PaaS service.

There is a spectrum from IaaS to pure PaaS. For example, Azure VMs can auto-scale by using VM
Scale Sets. This automatic scaling capability isn’t strictly PaaS, but it’s the type of management feature
that might be found in a PaaS service.

Functions-as-a-Service (FaaS) goes even further in removing the need to worry about the hosting
environment. Instead of creating compute instances and deploying code to those instances, you
simply deploy your code, and the service automatically runs it. You don’t need to administer the
compute resources. These services make use of serverless architecture, and seamlessly scale up or
down to whatever level necessary to handle the traffic. Azure Functions are a FaaS service.

IaaS gives the most control, flexibility, and portability. FaaS provides simplicity, elastic scale, and
potential cost savings, because you pay only for the time your code is running.

PaaS falls somewhere between the two. In general, the more flexibility a service provides, the more
you are responsible for configuring and managing the resources. FaaS services automatically manage
nearly all aspects of running an application, while IaaS solutions require you to provision, configure
and manage the VMs and network components you create.

Here are the main compute options currently available in Azure:

Virtual Machines are an IaaS service, allowing you to deploy and manage VMs inside a virtual
network (VNet).

•

CHAPTER 2a | Big compute architecture style

38

App Service is a managed service for hosting web apps, mobile app back ends, RESTful APIs, or
automated business processes.

Service Fabric is a distributed systems platform that can run in many environments, including
Azure or on premises. Service Fabric is an orchestrator of microservices across a cluster of
machines.

Azure Container Service lets you create, configure, and manage a cluster of VMs that are
preconfigured to run containerized applications.

Azure Functions is a managed FaaS service.

Azure Batch is a managed service for running large-scale parallel and high-performance
computing (HPC) applications.

Cloud Services is a managed service for running cloud applications. It uses a PaaS hosting model.

When selecting a compute option, here are some factors to consider:

Hosting model. How is the service hosted? What requirements and limitations are imposed by
this hosting environment?

DevOps. Is there built-in support for application upgrades? What is the deployment model?

Scalability. How does the service handle adding or removing instances? Can it auto-scale based
on load and other metrics?

Availability. What is the service SLA?

Cost. In addition to the cost of the service itself, consider the operations cost for managing a
solution built on that service. For example, IaaS solutions might have a higher operations cost.

What are the overall limitations of each service?

What kind of application architectures are appropriate for this service?

•

•

•

•
•

•

•

•

•

•

•

•
•

39

2b

Compute
comparison
The term compute refers to the hosting model for the computing
resources that your applications runs on. The following tables compare
Azure compute services across several axes. Refer to these tables when
selecting a compute option for your application.

Hosting model

Applications
Services,
guest

executables
Functions Containers Roles Scheduled

Jobs

App
Service

Service
Fabric

Azure
Functions

Azure
Container
Services

Cloud
Services

Azure
Batch

Virtual
Machines

 Agnostic

Agnostic

State
management

Agnostic

Supported

Supported

Stateless or
stateful

Built in

Supported

Supported

Stateless

Self-host,
IIS in

containers

Supported

Supported

Stateless or
stateful

N/A

Not
supported

Not
supported

Stateless

Agnostic

Supported

Supported

Stateless or
stateful

Built-in (IIS)

Supported

Supported

Stateless

No

Supported

Supported

Stateless

Web
hosting

Hybrid
Connectivity

Can be
deployed to
dedicated
VNet?

Windows,
Linux

Windows,
Linux

(preview)

Windows,
Linux

(preview)
N/A Windows,

Linux Windows Windows,
LinuxOS

Multiple apps
per instance
via app plans

11

Multiple
services
per VM

5

No dedicated
instances

No dedicated
nodes

Multiple
containers

per VM

3

One role
instance per

VM

2

Multiple
containers

per VM

1

Criteria

CHAPTER 2b | Compute comparison

Application
composition

Density

Minimum
number of
nodes

2 3
1

4

6

8

40

Notes:
If using App Service plan, functions run on the VMs allocated for your App Service plan.
For more information, go to https://docs.microsoft.com/en-us/azure/azure-functions/
functions-scale.
Higher SLA with two or more instances.
For production environments.
Can scale down to zero after job completes.
Requires App Service Environment (ASE).
Classic VNet only.
Requires ASE or BizTalk Hybrid Connections.
Classic VNet, or Resource Manager VNet via VNet peering.

1.

2.
3.
4.
5.
6.
7.
8.

DevOps

Notes:

Options include IIS Express for ASP.NET or node.js (iisnode); PHP web server; Azure Toolkit
for IntelliJ, Azure Toolkit for Eclipse. App Service also supports remote debugging of
deployed web app.

For information, go to https://docs.microsoft.com/en-us/azure/azure-resource-manager/
resource-manager-supported-services.

1.

2.

App
Service

Service
Fabric

Azure
Functions

Azure
Container
Services

Cloud
Services

Azure
Batch

Virtual
Machines

Local
debugging Agnostic

Agnostic

Supported

No built-in
support

IIS Express,
others

Web application,
Web Jobs for

background tasks

Supported

Deployment
slots

Guest executable,
Service model,
Actor model,

Containers

Supported

Rolling
upgrade

(per service)

Azure
Functions

CLI

Functions
with triggers

Supported

No built-in
support

Local
container
runtime

Agnostic

Supported

Depends on
orchestrator.

Local
emulator

Web role,
worker role

Limited

VIP swap or
rolling update

Not
supported

Command
line

application

Supported

N/A

Programming
model

Resource
Manager

Application
update

Local node
cluster

Criteria

CHAPTER 2b | Compute comparison

2

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services

41

Scalability

Availability

Notes:

For more information, go to https://docs.microsoft.com/en-us/azure/azure-functions/

functions-scale.

Notes:

For more information about speicifc SLAs, go to https://azure.microsoft.com/en-us/

support/legal/sla/.

1.

1.

Azure load
balancer

Platform
image: 1000

nodes per VMSS,
Custom image:
100 nodes per

VMSS

Integrated Azure Load
Balancer

100 nodes
per VMSS

Built-in
service

Integrated

Infinite

Not
supported

Azure load
balancer

100

Built-in
service

Integrated

No defined
limit, 200 max
recommended

N/A

Azure
load

balancer

20 core limit
by default.

Contact
customer
service for
increase.

App
Service

Service
Fabric

Azure
Functions

Azure
Container
Services

Cloud
Services

Azure
Batch

Virtual
MachinesCriteria

Auto-scaling

Load
balancer

Scale limit

Built-in
service

VM scale
sets

20 instances,
50 with App

Service
Environment

VM scale
sets

SLA

SLA for
Virtual

Machines

Traffic
manager

Traffic
manager

SLA for
Service Fabric

Traffic manager,
Multi-region

cluser

SLA for
Functions

Not
supported

SLA for Azure
Container

Service

Traffic
manager

SLA for
Cloud

Services

Traffic
manager

SLA for
Azure Batch

Not
Supported

App
Service

Service
Fabric

Azure
Functions

Azure
Container
Services

Cloud
Services

Azure
Batch

Virtual
Machines

SLA for
App Service

Criteria

CHAPTER 2b | Compute comparison

SLA

Multiregion
failover

1

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

42

Security

Other

Notes:

For information about specific cost, go to https://azure.microsoft.com/pricing/details/.1.

Configured in
VM

Supported

Supported

Supported

Supported

Supported

Supported

Supported

Configured
in VM

Supported

Supported

Not
supported

Supported

Supported

SSL

RBAC

Criteria
App

Service
Service
Fabric

Azure
Functions

Azure
Container
Services

Cloud
Services

Azure
Batch

Virtual
Machines

Windows,
Linux

Supported

App service
pricing

Supported

Service
fabric pricing

Supported

Azure
functions pricing

Supported

Azure
container

service pricing

Microservices,
EDA

Cloud services
pricing

Web-Queue
Worker

Supported

Big
Compute

Cost

Suitable
architecture
styles

App
Service

Service
Fabric

Azure
Functions

Azure
Container
Services

Cloud
Services

Azure
Batch

Virtual
MachinesCriteria

CHAPTER 2b | Compute comparison

https://azure.microsoft.com/pricing/details/

43

2c

Data store
overview
Choose the right data store.
Modern business systems manage increasingly large volumes of data. Data may be ingested from
external services, generated by the system itself, or created by users. These data sets may have
extremely varied characteristics and processing requirements. Businesses use data to assess trends,
trigger business processes, audit their operations, analyze customer behavior, and many other things.

This heterogeneity means that a single data store is usually not the best approach. Instead, it’s
often better to store different types of data in different data stores, each focused towards a specific
workload or usage pattern. The term polyglot persistence is used to describe solutions that use a mix
of data store technologies.

Selecting the right data store for your requirements is a key design decision. There are literally
hundreds of implementations to choose from among SQL and NoSQL databases. Data stores are
often categorized by how they structure data and the types of operations they support. This article
describes several of the most common storage models. Note that a particular data store technology
may support multiple storage models. For example, a relational database management systems
(RDBMS) may also support key/value or graph storage. In fact, there is a general trend for so-called
multimodel support, where a single database system supports several models. But it’s still useful to
understand the different models at a high level.

Not all data stores in a given category provide the same feature-set. Most data stores provide
server-side functionality to query and process data. Sometimes this functionality is built into the data
storage engine. In other cases, the data storage and processing capabilities are separated, and there
may be several options for processing and analysis. Data stores also support different programmatic
and management interfaces.

Generally, you should start by considering which storage model is best suited for your requirements.
Then consider a particular data store within that category, based on factors such as feature set, cost,
and ease of management.

CHAPTER 2c | Data store overview

44

Relational databases organize data as a series of two-dimensional tables with rows and columns.
Each table has its own columns, and every row in a table has the same set of columns. This model
is mathematically based, and most vendors provide a dialect of the Structured Query Language
(SQL) for retrieving and managing data. An RDBMS typically implements a transactionally consistent
mechanism that conforms to the ACID (Atomic, Consistent, Isolated, Durable) model for updating
information.

An RDBMS typically supports a schema-on-write model, where the data structure is defined ahead
of time, and all read or write operations must use the schema. This is in contrast to most NoSQL data
stores, particularly key/value types, where the schema-on-read model assumes that the client will
be imposing its own interpretive schema on data coming out of the database, and is agnostic to the
data format being written.

An RDBMS is very useful when strong consistency guarantees are important — where all changes
are atomic, and transactions always leave the data in a consistent state. However, the underlying
structures do not lend themselves to scaling out by distributing storage and processing across
machines. Also, information stored in an RDBMS, must be put into a relational structure by following
the normalization process. While this process is well understood, it can lead to inefficiencies, because
of the need to disassemble logical entities into rows in separate tables, and then reassemble the data
when running queries.

Relevant Azure service:

Azure SQL Database. For information, go to https://azure.microsoft.com/services/sql-database.

Azure Database for MySQL. For information, go to https://azure.microsoft.com/services/mysql.

Azure Database for PostgreSQL. For information, go to https://azure.microsoft.com/services/

postgresql.

Relational database management systems

•
•
•

A key/value store is essentially a large hash table. You associate each data value with a unique key, and
the key/value store uses this key to store the data by using an appropriate hashing function. The hashing
function is selected to provide an even distribution of hashed keys across the data storage.

Most key/value stores only support simple query, insert, and delete operations. To modify a value (either
partially or completely), an application must overwrite the existing data for the entire value. In most
implementations, reading or writing a single value is an atomic operation. If the value is large, writing may
take some time.

An application can store arbitrary data as a set of values, although some key/value stores impose limits on
the maximum size of values. The stored values are opaque to the storage system software. Any schema
information must be provided and interpreted by the application. Essentially, values are blobs and the key/

value store simply retrieves or stores the value by key.

Key/value stores

CHAPTER 2c | Data store overview

https://azure.microsoft.com/services/sql-database
https://azure.microsoft.com/services/mysql.
https://azure.microsoft.com/services/postgresql
https://azure.microsoft.com/services/postgresql

45

Key/value stores are highly optimized for applications performing simple lookups, but are less
suitable for systems that need to query data across different key/value stores. Key/value stores
are also not optimized for scenarios where querying by value is important, rather than performing
lookups based only on keys. For example, with a relational database, you can find a record by using a
WHERE clause, but key/values stores usually do not have this type of lookup capability for values.

A single key/value store can be extremely scalable, as the data store can easily distribute data across
multiple nodes on separate machines.

Relevant Azure services:

Cosmos DB. For information, go to https://azure.microsoft.com/services/cosmos-db.
Azure Redis Cache. For information, go to https://azure.microsoft.com/services/cache.

•
•

A document database is conceptually similar to a key/value store, except that it stores a collection
of named fields and data (known as documents), each of which could be simple scalar items or
compound elements such as lists and child collections. The data in the fields of a document can be
encoded in a variety of ways, including XML, YAML, JSON, BSON,or even stored as plain text. Unlike
key/value stores, the fields in documents are exposed to the storage management system, enabling
an application to query and filter data by using the values in these fields.

Typically, a document contains the entire data for an entity. What items constitute an entity are
application specific. For example, an entity could contain the details of a customer, an order, or a
combination of both. A single document may contain information that would be spread across
several relational tables in an RDBMS.

A document store does not require that all documents have the same structure. This free-form
approach provides a great deal of flexibility. Applications can store different data in documents as
business requirements change.

The application can retrieve documents by using the document key. This is a unique identifier for the
document, which is often hashed, to help distribute data evenly. Some document databases create
the document key automatically. Others enable you to specify an attribute of the document to use as
the key. The application can also query documents based on the value of one or more fields. Some
document databases support indexing to facilitate fast lookup of documents based on one or more
indexed fields.

Document databases

CHAPTER 2c | Data store overview

https://azure.microsoft.com/services/cosmos-db
https://azure.microsoft.com/services/cache

46

Many document databases support in-place updates, enabling an application to modify the values of
specific fields in a document without rewriting the entire document. Read and write operations over
multiple fields in a single document are usually atomic.

Relevant Azure service: Cosmos DB

A graph database stores two types of information, nodes and edges. You can think of nodes as
entities. Edges which specify the relationships between nodes. Both nodes and edges can have
properties that provide information about that node or edge, similar to columns in a table. Edges can
also have a direction indicating the nature of the relationship.

The purpose of a graph database is to allow an application to efficiently perform queries that
traverse the network of nodes and edges, and to analyze the relationships between entities. The
follow diagram shows an organization’s personnel database structured as a graph. The entities are
employees and departments, and the edges indicate reporting relationships and the department in
which employees work. In this graph, the arrows on the edges show the direction of the relationships.

Graph databases

CHAPTER 2c | Data store overview

47

This structure makes it straightforward to perform queries such as “Find all employees who report
directly or indirectly to Sarah” or “Who works in the same department as John?” For large graphs
with lots of entities and relationships, you can perform very complex analyses very quickly. Many
graph databases provide a query language that you can use to traverse a network of relationships
efficiently.

Relevant Azure service: Cosmos DB. For information, go to https://azure.microsoft.com/services/

cosmos-db

A column-family database organizes data into rows and columns. In its simplest form, a column-
family database can appear very similar to a relational database, at least conceptually. The real power
of a column-family database lies in its denormalized approach to structuring sparse data.

You can think of a column-family database as holding tabular data with rows and columns, but
the columns are divided into groups known as column families. Each column family holds a set of
columns that are logically related together and are typically retrieved or manipulated as a unit. Other
data that is accessed separately can be stored in separate column families. Within a column family,
new columns can be added dynamically, and rows can be sparse (that is, a row doesn’t need to have
a value for every column).

Column-family databases

The following diagram shows an example with two column families, Identity and Contact Info. The
data for a single entity has the same row key in each column-family. This structure, where the rows
for any given object in a column family can vary dynamically, is an important benefit of the column-
family approach, making this form of data store highly suited for storing structured, volatile data.
Unlike a key/value store or a document database, most column-family databases store data in key
order, rather than by computing a hash. Many implementations allow you to create indexes over
specific columns in a column-family. Indexes let you retrieve data by columns value, rather than row

key.

Read and write operations for a row are usually atomic with a single column-family, although some
implementations provide atomicity across the entire row, spanning multiple column-families.

Relevant Azure service: HBase in HDInsight. For information, go to https://azure.microsoft.com/
services/cosmos-db

CHAPTER 2c | Data store overview

https://azure.microsoft.com/services/cosmos-db
https://azure.microsoft.com/services/cosmos-db
https://azure.microsoft.com/services/cosmos-db
https://azure.microsoft.com/services/cosmos-db

48

Data analytics stores provide massively parallel solutions for ingesting, storing, and analyzing data.
This data is distributed across multiple servers using a share-nothing architecture to maximize
scalability and minimize dependencies. The data is unlikely to be static, so these stores must be able
to handle large quantities of information, arriving in a variety of formats from multiple streams, while
continuing to process new queries.

Relevant Azure services:

SQL Data Warehouse

Azure Data Lake

A search engine database supports the ability to search for information held in external data stores
and services. A search engine database can be used to index massive volumes of data and provide
near real-time access to these indexes. Although search engine databases are commonly thought of
as being synonymous with the web, many large-scale systems use them to provide structured and
ad-hoc search capabilities on top of their own databases.

The key characteristics of a search engine database are the ability to store and index information very
quickly, and provide fast response times for search requests. Indexes can be multi-dimensional and
may support free-text searches across large volumes of text data. Indexing can be performed using
a pull model, triggered by the search engine database, or using a push model, initiated by external
application code.
Searching can be exact or fuzzy. A fuzzy search finds documents that match a set of terms and
calculates how closely they match. Some search engines also support linguistic analysis that can
return matches based on synonyms, genre expansions (for example, matching dogs to pets), and
stemming (matching words with the same root).

Relevant Azure service: Azure Search

Data analytics

Search Engine Databases

Time series data is a set of values organized by time, and a time series database is a database that
is optimized for this type of data. Time series databases must support a very high number of writes,
as they typically collect large amounts of data in real time from a large number of sources. Updates
are rare, and deletes are often done as bulk operations. Although the records written to a time-series
database are generally small, there are often a large number of records, and total data size can grow
rapidly.

Time series databases are good for storing telemetry data. Scenarios include IoT sensors or
application/system counters.

Relevant Azure service: Time Series Insights

Time Series Databases

•
•

CHAPTER 2c | Data store overview

49

Object storage is optimized for storing and retrieving large binary objects (images, files, video and
audio streams, large application data objects and documents, virtual machine disk images). Objects
in these store types are composed of the stored data, some metadata, and a unique ID for accessing
the object. Object stores enables the management of extremely large amounts of unstructured data.

Relevant Azure service: Blob Storage

Sometimes, using simple flat files can be the most effective means of storing and retrieving
information. Using file shares enables files to be accessed across a network. Given appropriate
security and concurrent access control mechanisms, sharing data in this way can enable distributed
services to provide highly scalable data access for performing basic, low-level operations such as
simple read and write requests.

Relevant Azure service: File Storage

Object storage

Shared files

CHAPTER 2c | Data store overview

50

2d

Data store
comparison
Azure supports many types of data storage solutions, each providing different features and
capabilities. This article describes the comparison criteria you should use when evaluating a
data store. The goal is to help you determine which data storage types can meet your solution’s
requirements.

To start your comparison, gather as much of the following information as you can about your data
needs. This information will help you to determine which data storage types will meet your needs.

Criteria for choosing a data store

General Considerations

Functional requirements
Data format. What type of data are you intending to store? Common types include transactional
data, JSON objects, telemetry, search indexes, or flat files.

Data size. How large are the entities you need to store? Will these entities need to be
maintained as a single document, or can they be split across multiple documents, tables,
collections, and so forth?

Scale and structure. What is the overall amount of storage capacity you need? Do you
anticipate partitioning your data?

Data relationships. Will your data need to support one-to-many or many-to-many
relationships? Are relationships themselves an important part of the data? Will you need to join
or otherwise combine data from within the same dataset, or from external datasets?

Consistency model. How important is it for updates made in one node to appear in other
nodes, before further changes can be made? Can you accept eventual consistency? Do you need
ACID guarantees for transactions?

Schema flexibility. What kind of schemas will you apply to your data? Will you use a fixed
schema, a schema-on-write approach, or a schema-on-read approach?

•

•

•

•

•

•

CHAPTER 2d | Data store comparison

51

Non-functional requirements

Concurrency. What kind of concurrency mechanism do you want to use when updating and
synchronizing data? Will the application perform many updates that could potentially conflict. If
so, you may requiring record locking and pessimistic concurrency control. Alternatively, can you
support optimistic concurrency controls? If so, is simple timestamp-based concurrency control
enough, or do you need the added functionality of multi-version concurrency control?

Data movement. Will your solution need to perform ETL tasks to move data to other stores or
data warehouses?

Data lifecycle. Is the data write-once, read-many? Can it be moved into cool or cold storage?

Other supported features. Do you need any other specific features, such as schema validation,
aggregation, indexing, full-text search, MapReduce, or other query capabilities?

Performance and scalability. What are your data performance requirements? Do you have
specific requirements for data ingestion rates and data processing rates? What are the acceptable
response times for querying and aggregation of data once ingested? How large will you need the
data store to scale up? Is your workload more read-heavy or write-heavy?

Reliability. What overall SLA do you need to support? What level of fault-tolerance do you need
to provide for data consumers? What kind of backup and restore capabilities do you need?

Replication. Will your data need to be distributed among multiple replicas or regions? What
kind of data replication capabilities do you require?

Limits. Will the limits of a particular data store support your requirements for scale, number of
connections, and throughput?

•

•

•
•

•

•

•

•

Management and cost
Managed service. When possible, use a managed data service, unless you require specific
capabilities that can only be found in an IaaS-hosted data store.

Region availability. For managed services, is the service available in all Azure regions? Does
your solution need to be hosted in certain Azure regions?

Portability. Will your data need to migrated to on-premises, external datacenters, or other cloud
hosting environments?

Licensing. Do you have a preference of a proprietary versus OSS license type? Are there any
other external restrictions on what type of license you can use?

Overall cost. What is the overall cost of using the service within your solution? How many
instances will need to run, to support your uptime and throughput requirements? Consider
operations costs in this calculation. One reason to prefer managed services is the reduced
operational cost.

Cost effectiveness. Can you partition your data, to store it more cost effectively? For example,
can you move large objects out of an expensive relational database into an object store?

•

•

•

•

•

•

CHAPTER 2d | Data store comparison

52

Security
Security. What type of encryption do you require? Do you need encryption at rest? What
authentication mechanism do you want to use to connect to your data?

Auditing. What kind of audit log do you need to generate?

Networking requirements. Do you need to restrict or otherwise manage access to your data
from other network resources? Does data need to be accessible only from inside the Azure
environment? Does the data need to be accessible from specific IP addresses or subnets? Does
it need to be accessible from applications or services hosted on-premises or in other external
datacenters?

DevOps
Skill set. Are there particular programming languages, operating systems, or other technology
that your team is particularly adept at using? Are there others that would be difficult for your
team to work with?

Clients. Is there good client support for your development languages?

The following sections compare various data store models in terms of workload profile, data types,
and example use cases.

•

•
•

•

•

Relational database management systems (RDBMS)

Workload
Both the creation of new records and updates to existing data happen regularly.

Multiple operations have to be completed in a single transaction.

Requires aggregation functions to perform cross-tabulation.

Strong integration with reporting tools is required.

Relationships are enforced using database constraints.

Indexes are used to optimize query performance.

Allows access to specific subsets of data.

•

•

•

•

•

•

•

•

•

•

•
•

Data type
Data is highly normalized.

Database schemas are required and enforced.

Many-to-many relationships between data entities in the database.

Constraints are defined in the schema and imposed on any data in the database.

Data requires high integrity. Indexes and relationships need to be maintained accurately.

CHAPTER 2d | Data store comparison

53

•

•

Data requires strong consistency. Transactions operate in a way that ensures all data are 100%
consistent for all users and processes.

Size of individual data entries is intended to be small to medium-sized.

Examples
Line of business (human capital management, customer relationship management, enterprise
resource planning)

Inventory management

Reporting database

Accounting

Asset management

Fund management

Order management

•

•
•
•
•
•
•

Document databases
Workload

Data type

General purpose.
Insert and update operations are common. Both the creation of new records and updates to
existing data happen regularly.

No object-relational impedance mismatch. Documents can better match the object structures
used in application code.

Optimistic concurrency is more commonly used.

Data must be modified and processed by consuming application.

Data requires index on multiple fields.

Individual documents are retrieved and written as a single block.

Data can be managed in de-normalized way.
Size of individual document data is relatively small.
Each document type can use its own schema.
Documents can include optional fields.
Document data is semi-structured, meaning that data types of each field are not strictly defined.
Data aggregation is supported.

•
•

•

•
•
•
•

•
•
•
•
•
•

CHAPTER 2d | Data store comparison

54

Examples
Product catalog
User accounts
Bill of materials
Personalization
Content management
Operations data
Inventory management
Transaction history data
Materialized view of other NoSQL stores. Replaces file/BLOB indexing.

•
•
•
•
•
•
•
•
•

Key/value stores
Workload

Data type

Examples

Data is identified and accessed using a single ID key, like a dictionary.
Massively scalable.
No joins, lock, or unions are required.
No aggregation mechanisms are used.
Secondary indexes are generally not used.

Data size tends to be large.
Each key is associated with a single value, which is an unmanaged data BLOB.
There is no schema enforcement.
No relationships between entities.

Data caching
Session management
User preference and profile management
Product recommendation and ad serving
Dictionaries

•
•
•
•
•

•
•
•
•

•
•
•
•
•

CHAPTER 2d | Data store comparison

55

Key/value stores
Workload

Data type

Examples

Data is identified and accessed using a single ID key, like a dictionary.
Massively scalable.
No joins, lock, or unions are required.
No aggregation mechanisms are used.
Secondary indexes are generally not used.

Data size tends to be large.
Each key is associated with a single value, which is an unmanaged data BLOB.
There is no schema enforcement.
No relationships between entities.

Data caching
Session management
User preference and profile management
Product recommendation and ad serving
Dictionaries

•
•
•
•
•

•
•
•
•

•
•
•
•
•

Graph databases
Workload

The relationships between data items are very complex, involving many hops between related
data items.

The relationship between data items are dynamic and change over time.

Relationships between objects are first-class citizens, without requiring foreign-keys and joins to
traverse.

•

•
•

Data type

Data is comprised of nodes and relationships.
Nodes are similar to table rows or JSON documents.
Relationships are just as important as nodes, and are exposed directly in the query language.
Composite objects, such as a person with multiple phone numbers, tend to be broken into
separate, smaller nodes, combined with traversable relationships.

•
•
•
•

CHAPTER 2d | Data store comparison

56

Examples
Organization charts
Social graphs
Fraud detection
Analytics
Recommendation engines

•
•
•
•
•

Column-family databases
Workload

Data type

Examples

Most column-family databases perform write operations extremely quickly.
Update and delete operations are rare.
Designed to provide high throughput and low-latency access.
Supports easy query access to a particular set of fields within a much larger record.
Massively scalable.

Data is stored in tables consisting of a key column and one or more column families.
Specific columns can vary by individual rows.
Individual cells are accessed via get and put commands
Multiple rows are returned using a scan command.

Recommendations
Personalization
Sensor data
Telemetry
Messaging
Social media analytics
Web analytics
Activity monitoring
Weather and other time-series data

•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•

CHAPTER 2d | Data store comparison

57

Search engine databases
Workload

Data type

Examples

Indexing data from multiple sources and services.
Queries are ad-hoc and can be complex.
Requires aggregation.
Full text search is required.
Ad hoc self-service query is required.
Data analysis with index on all fields is required.

Semi-structured or unstructured
Text
Text with reference to structured data

Product catalogs
Site search
Logging
Analytics
Shopping sites

•
•
•
•
•
•

•
•
•

•
•
•
•
•

•
•

•
•
•
•

Data warehouse

Workload

Data type

Data analytics
Enterprise BI

Historical data from multiple sources.
Usually denormalized in a “star” or “snowflake” schema, consisting of fact and dimension tables.
Usually loaded with new data on a scheduled basis.
Dimension tables often include multiple historic versions of an entity, referred to as a slowly
changing dimension.

Examples
An enterprise data warehouse that provides data for analytical models, reports, and dashboards.•

CHAPTER 2d | Data store comparison

58

Time series databases
Workload

Data type

Examples

An overwhelmingly proportion of operations (95-99%) are writes.
Records are generally appended sequentially in time order.
Updates are rare.
Deletes occur in bulk, and are made to contiguous blocks or records.
Read requests can be larger than available memory.
It’s common for multiple reads to occur simultaneously.
Data is read sequentially in either ascending or descending time order.

A time stamp that is used as the primary key and sorting mechanism.
Measurements from the entry or descriptions of what the entry represents.
Tags that define additional information about the type, origin, and other information about the
entry.

Monitoring and event telemetry.
Sensor or other IoT data.

•
•
•
•
•
•
•

•
•
•

•
•

•
•
•
•

•
•
•

Object storage
Workload

Data type

Identified by key.
Objects may be publicly or privately accessible.
Content is typically an asset such as a spreadsheet, image, or video file.
Content must be durable (persistent), and external to any application tier or virtual machine.

Data size is large.
Blob data.
Value is opaque.

CHAPTER 2d | Data store comparison

59

Examples
Images, videos, office documents, PDFs
CSS, Scripts, CSV
Static HTML, JSON
Log and audit files
Database backups

•
•
•
•
•

Shared files
Workload

Data type

Examples

Migration from existing apps that interact with the file system.
Requires SMB interface.

Files in a hierarchical set of folders.
Accessible with standard I/O libraries.

Legacy files.
Shared content accessible among a number of VMs or app instances.

•
•

•
•

•
•

CHAPTER 2d | Data store comparison

60

3

Design
your Azure
application:
design principles
Now that you have chosen your architecture and your compute and data
store technologies, you are ready to start designing and building your
cloud application. This section and the two following it provide guidance
and resources for optimal application design for the cloud.

This section describes ten design principles to keep in mind as you build. Following these principles
will help you build an application that is more scalable, resilient, and manageable.

CHAPTER 3 | Design your Azure application: design principles

61

Design for self healing. In a distributed system, failures happen. Design your application to be
self healing when failures occur.

Make all things redundant. Build redundancy into your application, to avoid having single
points of failure.

Minimize coordination. Minimize coordination between application services to achieve
scalability.

Design to scale out. Design your application so that it can scale horizontally, adding or
removing new instances as demand requires.

Partition around limits. Use partitioning to work around database, network, and compute limits.

Design for operations. Design your application so that the operations team has the tools they
need.

Use managed services. When possible, use platform as a service (PaaS) rather than
infrastructure as a service (IaaS).

Use the best data store for the job. Pick the storage technology that is the best fit for your data
and how it will be used.

Design for evolution. All successful applications change over time. An evolutionary design is
key for continuous innovation.

Build for the needs of business. Every design decision must be justified by a business
requirement.

1.

2.

3.

4.

5.

6.

7.

9.

9.

10.

CHAPTER 3 | Design your Azure application: design principles

62

3a

Design for self
healing
Design your application to be self healing when failures occur
In a distributed system, failures happen. Hardware can fail. The network can have transient failures.
Rarely, an entire service or region may experience a disruption, but even those must be planned for.

Therefore, design an application to be self healing when failures occur. This requires a three-pronged
approach:

Detect failures.
Respond to failures gracefully.
Log and monitor failures, to give operational insight.

How you respond to a particular type of failure may depend on your application’s availability
requirements. For example, if you require very high availability, you might automatically fail over to
a secondary region during a regional outage. However, that will incur a higher cost than a single-
region deployment.

Also, don’t just consider big events like regional outages, which are generally rare. You should focus
as much, if not more, on handling local, short-lived failures, such as network connectivity failures or
failed database connections.

•
•
•

Retry failed operations. Transient failures may occur due to momentary loss of network
connectivity, a dropped database connection, or a timeout when a service is busy. Build retry logic
into your application to handle transient failures. For many Azure services, the client SDK implements
automatic retries. For more information, see Retry Pattern, and go to https://docs.microsoft.com/en-
us/azure/architecture/best-practices/transient-faults.

Protect failing remote services (Circuit Breaker). It’s good to retry after a transient failure, but if
the failure persists, you can end up with too many callers hammering a failing service. This can lead
to cascading failures, as requests back up. Use the Circuit Breaker Pattern to fail fast (without making
the remote call) when an operation is likely to fail.

Recommendations

CHAPTER 3a | Design for self healing

https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults

63

Isolate critical resources (Bulkhead). Failures in one subsystem can sometimes cascade. This can
happen if a failure causes some resources, such as threads or sockets, not to get freed in a timely
manner, leading to resource exhaustion. To avoid this, partition a system into isolated groups, so that
a failure in one partition does not bring down the entire system.

Perform load leveling. Applications may experience sudden spikes in traffic that can overwhelm
services on the backend. To avoid this, use the Queue-Based Load Leveling Pattern to queue work
items to run asynchronously. The queue acts as a buffer that smooths out peaks in the load.

Fail over. If an instance can’t be reached, fail over to another instance. For things that are stateless,
like a web server, put several instances behind a load balancer or traffic manager. For things that
store state, like a database, use replicas and fail over. Depending on the data store and how it
replicates, this may require the application to deal with eventual consistency.

Compensate failed transactions. In general, avoid distributed transactions, as they require
coordination across services and resources. Instead, compose an operation from smaller individual
transactions. If the operation fails midway through, use Compensating Transactions to undo any step
that already completed.

Checkpoint long-running transactions. Checkpoints can provide resiliency if a long-running
operation fails. When the operation restarts (for example, it is picked up by another VM), it can be
resumed from the last checkpoint.

Degrade gracefully. Sometimes you can’t work around a problem, but you can provide reduced
functionality that is still useful. Consider an application that shows a catalog of books. If the
application can’t retrieve the thumbnail image for the cover, it might show a placeholder image.
Entire subsystems might be noncritical for the application. For example, in an e-commerce site,
showing product recommendations is probably less critical than processing orders.

Throttle clients. Sometimes a small number of users create excessive load, which can reduce your
application’s availability for other users. In this situation, throttle the client for a certain period of
time. See Throttling Pattern.

Block bad actors. Just because you throttle a client, it doesn’t mean the client was acting maliciously.
It just means the client exceeded their service quota. But if a client consistently exceeds their quota
or otherwise behaves badly, you might block them. Define an out-of-band process for user to request
getting unblocked.

Use leader election. When you need to coordinate a task, use Leader Election to select a
coordinator. That way, the coordinator is not a single point of failure. If the coordinator fails, a new
one is selected. Rather than implement a leader election algorithm from scratch, consider an off-the-
shelf solution such as Zookeeper.

Test with fault injection. All too often, the success path is well tested but not the failure path. A
system could run in production for a long time before a failure path is exercised. Use fault injection to
test the resiliency of the system to failures, either by triggering actual failures or by simulating them.

Embrace chaos engineering. Chaos engineering extends the notion of fault injection, by randomly
injecting failures or abnormal conditions into production instances.

For a structured approach to making your applications self healing, see Design resilient applications
for Azure.

CHAPTER 3a | Design for self healing

64

3b

Make all things
redundant
Build redundancy into your application, to avoid having single points of
failure
A resilient application routes around failure. Identify the critical paths in your application. Is there
redundancy at each point in the path? If a subsystem fails, will the application fail over to something
else?

Recommendations
Consider business requirements. The amount of redundancy built into a system can affect both
cost and complexity. Your architecture should be informed by your business requirements, such as
recovery time objective (RTO). For example, a multi-region deployment is more expensive than a
single-region deployment, and is more complicated to manage. You will need operational procedures
to handle failover and failback. The additional cost and complexity might be justified for some
business scenarios and not others.

Place VMs behind a load balancer. Don’t use a single VM for mission-critical workloads. Instead,
place multiple VMs behind a load balancer. If any VM becomes unavailable, the load balancer
distributes traffic to the remaining healthy VMs. To learn how to deploy this configuration, see
Multiple VMs for scalability and availability.

CHAPTER 3b | Make all things redundant

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/multi-vm

65

Replicate databases. Azure SQL Database and Cosmos DB automatically replicate the data within a
region, and you can enable geo-replication across regions. If you are using an IaaS database solution,
choose one that supports replication and failover, such as SQL Server Always On Availability Groups.
For information, go to https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/
windows/always-on-availability-groups-sql-server.

Enable geo-replication. Geo-replication for Azure SQL Database and Cosmos DB creates secondary
readable replicas of your data in one or more secondary regions. In the event of an outage, the
database can fail over to the secondary region for writes. For more information about Azure SQL
database, go to https://docs.microsoft.com/en-us/azure/sql-database/sql-database-geo-replication-
overview. For more information about Cosmos DB, go to https://docs.microsoft.com/en-us/azure/
documentdb/documentdb-distribute-data-globally.

Partition for availability. Database partitioning is often used to improve scalability, but it can also
improve availability. If one shard goes down, the other shards can still be reached. A failure in one
shard will only disrupt a subset of the total transactions.

Deploy to more than one region. For the highest availability, deploy the application to more than
one region. That way, in the rare case when a problem affects an entire region, the application can
fail over to another region. The following diagram shows a multi-region application that uses Azure
Traffic Manager to handle failover.

Synchronize front and backend failover. Use Azure Traffic Manager to fail over the front end. If
the front end becomes unreachable in one region, Traffic Manager will route new requests to the
secondary region. Depending on your database solution, you may need to coordinate failing over the
database.

Use automatic failover but manual failback. Use Traffic Manager for automatic failover, but not
for automatic failback. Automatic failback carries a risk that you might switch to the primary region
before the region is completely healthy. Instead, verify that all application subsystems are healthy
before manually failing back. Also, depending on the database, you might need to check data
consistency before failing back.

Include redundancy for Traffic Manager. Traffic Manager is a possible failure point. Review the
Traffic Manager SLA, and determine whether using Traffic Manager alone meets your business
requirements for high availability. If not, consider adding another traffic management solution as a
failback. If the Azure Traffic Manager service fails, change your CNAME records in DNS to point to the
other traffic management service.

CHAPTER 3b | Make all things redundant

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server.

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-geo-replication-overview.
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-geo-replication-overview.
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally.

https://docs.microsoft.com/en-us/azure/documentdb/documentdb-distribute-data-globally.

66

3c

Minimize
coordination
Minimize coordination between application services to achieve scalability.
Most cloud applications consist of multiple application services — web front ends, databases,
business processes, reporting and analysis, and so on. To achieve scalability and reliability, each of
those services should run on multiple instances.

What happens when two instances try to perform concurrent operations that affect some shared
state? In some cases, there must be coordination across nodes, for example to preserve ACID
guarantees. In this diagram, Node2 is waiting for Node1 to release a database lock:

Coordination limits the benefits of horizontal scale and creates bottlenecks. In this example, as you
scale out the application and add more instances, you’ll see increased lock contention. In the worst
case, the front-end instances will spend most of their time waiting on locks. “Exactly once” semantics
are another frequent source of coordination. For example, an order must be processed exactly once.
Two workers are listening for new orders. Worker1 picks up an order for processing. The application
must ensure that Worker2 doesn’t duplicate the work, but also if Worker1 crashes, the order isn’t
dropped.

CHAPTER 3c | Minimize coordination

67

You can use a pattern such as Scheduler Agent Supervisor to coordinate between the workers, but in
this case a better approach might be to partition the work. Each worker is assigned a certain range
of orders (say, by billing region). If a worker crashes, a new instance picks up where the previous
instance left off, but multiple instances aren’t contending.

Recommendations
Embrace eventual consistency. When data is distributed, it takes coordination to enforce strong
consistency guarantees. For example, suppose an operation updates two databases. Instead of
putting it into a single transaction scope, it’s better if the system can accommodate eventual
consistency, perhaps by using the Compensating Transaction pattern to logically roll back after a
failure.

Use domain events to synchronize state. A domain event is an event that records when something
happens that has significance within the domain. Interested services can listen for the event, rather
than using a global transaction to coordinate across multiple services. If this approach is used, the
system must tolerate eventual consistency (see previous item).

Consider patterns such as CQRS and event sourcing. These two patterns can help to reduce
contention between read workloads and write workloads.

The CQRS pattern separates read operations from write operations. In some implementations,
the read data is physically separated from the write data.

In the Event Sourcing pattern, state changes are recorded as a series of events to an append-only
data store. Appending an event to the stream is an atomic operation, requiring minimal locking.

These two patterns complement each other. If the write-only store in CQRS uses event sourcing, the
read-only store can listen for the same events to create a readable snapshot of the current state,
optimized for queries. Before adopting CQRS or event sourcing, however, be aware of the challenges
of this approach. For more information, see CQRS architecture style.

•

•

Partition data. Avoid putting all of your data into one data schema that is shared across many
application services. A microservices architecture enforces this principle by making each service
responsible for its own data store. Within a single database, partitioning the data into shards can
improve concurrency, because a service writing to one shard does not affect a service writing to a
different shard.

Design idempotent operations. When possible, design operations to be idempotent. That way, they
can be handled using at-least-once semantics. For example, you can put work items on a queue. If a
worker crashes in the middle of an operation, another worker simply picks up the work item.

Use asynchronous parallel processing. If an operation requires multiple steps that are performed
asynchronously (such as remote service calls), you might be able to call them in parallel, and then
aggregate the results. This approach assumes that each step does not depend on the results of the
previous step.

CHAPTER 3c | Minimize coordination

68

Use optimistic concurrency when possible. Pessimistic concurrency control uses database locks
to prevent conflicts. This can cause poor performance and reduce availability. With optimistic
concurrency control, each transaction modifies a copy or snapshot of the data. When the transaction
is committed, the database engine validates the transaction and rejects any transactions that would
affect database consistency.

Azure SQL Database and SQL Server support optimistic concurrency through snapshot isolation.
For more information, go to https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-
isolation-level-transact-sql. Some Azure storage services support optimistic concurrency through
the use of Etags, including DocumentDB API and Azure Storage. For more information about
DocumentDB API, go to https://docs.microsoft.com/en-us/azure/documentdb/documentdb-faq.
For more information about Azure Storage, go to https://azure.microsoft.com/blog/managing-
concurrency-in-microsoft-azure-storage-2/

Consider MapReduce or other parallel, distributed algorithms. Depending on the data and type
of work to be performed, you may be able to split the work into independent tasks that can be
performed by multiple nodes working in parallel. See Big Compute Architecture Style.

Use leader election for coordination. In cases where you need to coordinate operations, make
sure the coordinator does not become a single point of failure in the application. Using the Leader
Election pattern, one instance is the leader at any time, and acts as the coordinator. If the leader fails,
a new instance is elected to be the leader.

CHAPTER 3c | Minimize coordination

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql
https://docs.microsoft.com/en-us/azure/documentdb/documentdb-faq
https://azure.microsoft.com/blog/managing-concurrency-in-microsoft-azure-storage-2/
https://azure.microsoft.com/blog/managing-concurrency-in-microsoft-azure-storage-2/

69

3d

Design to scale
out
Design your application so that it can scale horizontally
A primary advantage of the cloud is elastic scaling — the ability to use as much capacity as you
need, scaling out as load increases, and scaling in when the extra capacity is not needed. Design your
application so that it can scale horizontally, adding or removing new instances as demand requires.

Recommendations
Avoid instance stickiness. Stickiness, or session affinity, is when requests from the same client are
always routed to the same server. Stickiness limits the application’s ability to scale out. For example,
traffic from a high-volume user will not be distributed across instances. Causes of stickiness include
storing session state in memory, and using machine-specific keys for encryption. Make sure that any
instance can handle any request.

Identify bottlenecks. Scaling out isn’t a magic fix for every performance issue. For example, if your
backend database is the bottleneck, it won’t help to add more web servers. Identify and resolve the
bottlenecks in the system first, before throwing more instances at the problem. Stateful parts of the
system are the most likely cause of bottlenecks.

Decompose workloads by scalability requirements. Applications often consist of multiple
workloads, with different requirements for scaling. For example, an application might have a public-
facing site and a separate administration site. The public site may experience sudden surges in traffic,
while the administration site has a smaller, more predictable load.

Offload resource-intensive tasks. Tasks that require a lot of CPU or I/O resources should be moved
to background jobs when possible, to minimize the load on the front end that is handling user
requests.

Use built-in autoscaling features. Many Azure compute services have built-in support for
autoscaling. If the application has a predictable, regular workload, scale out on a schedule. For
example, scale out during business hours. Otherwise, if the workload is not predictable, use
performance metrics such as CPU or request queue length to trigger autoscaling. For autoscaling
best practices, see Autoscaling. For autoscaling best practices, go to https://docs.microsoft.com/en-
us/azure/architecture/best-practices/auto-scaling.

CHAPTER 3d | Design to scale out

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling

70

Consider aggressive autoscaling for critical workloads. For critical workloads, you want to keep
ahead of demand. It’s better to add new instances quickly under heavy load to handle the additional
traffic, and then gradually scale back.

Design for scale in. Remember that with elastic scale, the application will have periods of scale in,
when instances get removed. The application must gracefully handle instances being removed. Here
are some ways to handle scalein:

Listen for shutdown events (when available) and shut down cleanly.
Clients/consumers of a service should support transient fault handling and retry.
For long-running tasks, consider breaking up the work, using checkpoints or the Pipes and Filters
pattern.
Put work items on a queue so that another instance can pick up the work, if an instance is
removed in the middle of processing.

•
•
•

•

CHAPTER 3d | Design to scale out

71

3e

Partition around
limits
Use Partitioning to work around database, network, and compute limits.
A primary advantage of the cloud is elastic scaling — the ability to use as much capacity as you
need, scaling out as load increases, and scaling in when the extra capacity is not needed. Design your
application so that it can scale horizontally, adding or removing new instances as demand requires.

In the cloud, all services have limits in their ability to scale up. Azure service limits are documented
in Azure subscription and service limits, quotas, and constraints. Limits include number of cores,
database size, query throughput, and network throughput. If your system grows sufficiently large,
you may hit one or more of these limits. Use partitioning to work around these limits.

There are many ways to partition a system, such as:
Partition a database to avoid limits on database size, data I/O, or number of concurrent sessions.
Partition a queue or message bus to avoid limits on the number of requests or the number of
concurrent connections.
Partition an App Service web app to avoid limits on the number of instances per App Service
plan.

A database can be partitioned horizontally, vertically, or functionally.

In horizontal partitioning, also called sharding, each partition holds data for a subset of the total
data set. The partitions share the same data schema. For example, customers whose names start
with A–M go into one partition, N–Z into another partition.
In vertical partitioning, each partition holds a subset of the fields for the items in the data store.
For example, put frequently accessed fields in one partition, and less frequently accessed fields in
another.
In functional partitioning, data is partitioned according to how it is used by each bounded
context in the system. For example, store invoice data in one partition and product inventory
data in another. The schemas are independent.

For more information, go to https://docs.microsoft.com/en-us/azure/architecture/best-practices/
data-partitioning.

•
•

•

•

•

•

CHAPTER 3e | Partition around limits

https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning

72

Recommendations
Partition different parts of the application. Databases are one obvious candidate for partitioning,
but also consider storage, cache, queues, and compute instances.

Design the partition key to avoid hot spots. If you partition a database, but one shard still gets the
majority of the requests, then you haven’t solved your problem. Ideally, load gets distributed evenly
across all the partitions. For example, hash by customer ID and not the first letter of the customer
name, because some letters are more frequent. The same principle applies when partitioning a
message queue. Pick a partition key that leads to an even distribution of messages across the set of
queues. For more information, see Sharding.

Partition around Azure subscription and service limits. Individual components and services have
limits, but there are also limits for subscriptions and resource groups. For very large applications, you
might need to partition around those limits.

Partition at different levels. Consider a database server deployed on a VM. The VM has a VHD that
is backed by Azure Storage. The storage account belongs to an Azure subscription. Notice that each
step in the hierarchy has limits. The database server may have a connection pool limit. VMs have
CPU and network limits. Storage has IOPS limits. The subscription has limits on the number of VM
cores. Generally, it’s easier to partition lower in the hierarchy. Only large applications should need to
partition at the subscription level.

CHAPTER 3e | Partition around limits

73

3f

Design for
operations
Design an application so that the operations team has the tools they
need.

The cloud has dramatically changed the role of the operations team. They are no longer responsible
for managing the hardware and infrastructure that hosts the application. That said, operations is
still a critical part of running a successful cloud application. Some of the important functions of the
operations team include:

Deployment
Monitoring
Escalation
Incident response
Security auditing

Robust logging and tracing are particularly important in cloud applications. Involve the operations
team in design and planning, to ensure the application gives them the data and insight thay need to
be successful.

•
•
•
•
•

Recommendations
Make all things observable. Once a solution is deployed and running, logs and traces are your
primary insight into the system. Tracing records a path through the system, and is useful to pinpoint
bottlenecks, performance issues, and failure points. Logging captures individual events such as
application state changes, errors, and exceptions. Log in production, or else you lose insight at the
very times when you need it the most.

Instrument for monitoring. Monitoring gives insight into how well (or poorly) an application is
performing, in terms of availability, performance, and system health. For example, monitoring tells
you whether you are meeting your SLA. Monitoring happens during the normal operation of the
system. It should be as close to real-time as possible, so that the operations staff can react to issues
quickly. Ideally, monitoring can help avert problems before they lead to a critical failure. For more
information, go to https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring.

CHAPTER 3f | Design for operations

https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring

74

Instrument for root cause analysis. Root cause analysis is the process of finding the underlying
cause of failures. It occurs after a failure has already happened.

Use distributed tracing. Use a distributed tracing system that is designed for concurrency,
asynchrony, and cloud scale. Traces should include a correlation ID that flows across service
boundaries. A single operation may involve calls to multiple application services. If an operation fails,
the correlation ID helps to pinpoint the cause of the failure.

Standardize logs and metrics. The operations team will need to aggregate logs from across the
various services in your solution. If every service uses its own logging format, it becomes difficult or
impossible to get useful information from them. Define a common schema that includes fields such
as correlation ID, event name, IP address of the sender, and so forth. Individual services can derive
custom schemas that inherit the base schema and contain additional fields.

Automate management tasks. Including provisioning, deployment, and monitoring. Automating a
task makes it repeatable and less prone to human errors.

Treat configuration as code. Check configuration files into a version control system, so that you can
track and version your changes, and roll back if needed.

CHAPTER 3f | Design for operations

75

3g

Use managed
services
When possible, use platform as a service (PaaS) rather than infrastructure
as a service (IaaS).

IaaS is like having a box of parts. You can build anything, but you have to assemble it yourself.
Managed services are easier to configure and administer. You don’t need to provision VMs, set up
VNets, manage patches and updates, and all of the other overhead associated with running software
on a VM.

For example, suppose your application needs a message queue. You could set up your own
messaging service on a VM, using something like RabbitMQ. But Azure Service Bus already provides
reliable messaging as service, and it’s simpler to set up. Just create a Service Bus namespace (which
can be done as part of a deployment script) and then call Service Bus using the client SDK.

Of course, your application may have specific requirements that make an IaaS approach more
suitable. However, even if your application is based on IaaS, look for places where it may be natural
to incorporate managed services. These include cache, queues, and data storage.

Instead of running... Consider using...
Active Directory	
Elasticsearch
Hadoop
IIS
Mongo DBC
Redis
SQL Server

Azure Active Directory Domain Services
Azure Search
HDInsight
App Service
Cosmos DB
Azure Redis Cache
Azure SQL Database

•
•
•
•
•
•
•

•
•
•
•
•
•
•

CHAPTER 3g | Use managed services

76

3h

Use the best data
store for the job
Pick the storage technology that is the best fit for your data and how it
will be used.

IaaS is like having a box of parts. You can build anything, but you have to assemble it yourself.
Managed services are easier to configure and administer. You don’t need to provision VMs, set up
VNets, manage patches and updates, and all of the other overhead associated with running software
on a VM.

For example, suppose your application needs a message queue. You could set up your own
messaging service on a VM, using something like RabbitMQ. But Azure Service Bus already provides
reliable messaging as service, and it’s simpler to set up. Just create a Service Bus namespace (which
can be done as part of a deployment script) and then call Service Bus using the client SDK.

Of course, your application may have specific requirements that make an IaaS approach more
suitable. However, even if your application is based on IaaS, look for places where it may be natural
to incorporate managed services. These include cache, queues, and data storage.

Gone are the days when you would just stick all of your data into a big relational SQL database.
Relational databases are very good at what they do — providing ACID guarantees for transactions
over relational data. But they come with some costs:

Queries may require expensive joins.
Data must be normalized and conform to a predefined schema (schema on write).
Lock contention may impact performance.

In any large solution, it’s likely that a single data store technology won’t fill all your needs.
Alternatives to relational databases include key/value stores, document databases, search engine
databases, time series databases, column family databases, and graph databases. Each has pros and
cons, and different types of data fit more naturally into one or another.

For example, you might store a product catalog in a document database, such as Cosmos DB, which
allows for a flexible schema. In that case, each product description is a self-contained document. For
queries over the entire catalog, you might index the catalog and store the index in Azure Search.

•
•
•

CHAPTER 3h | Use the best data store for the job

77

Product inventory might go into a SQL database, because that data requires ACID guarantees.

Remember that data includes more than just the persisted application data. It also includes
application logs, events, messages, and caches.

Recommendations
Don’t use a relational database for everything. Consider other data stores when appropriate. See
Choose the right data store.

Embrace polyglot persistence. In any large solution, it’s likely that a single data store technology
won’t fill all your needs.

Consider the type of data. For example, put transactional data into SQL, put JSON documents
into a document database, put telemetry data into a time series data base, put application logs in
Elasticsearch, and put blobs in Azure Blob Storage.

Prefer availability over (strong) consistency. The CAP theorem implies that a distributed system
must make trade-offs between availability and consistency. (Network partitions, the other leg of
the CAP theorem, can never be completely avoided.) Often, you can achieve higher availability by
adopting an eventual consistency model.

Consider the skill set of the development team. There are advantages to using polyglot
persistence, but it’s possible to go overboard. Adopting a new data storage technology requires a
new set of skills. The development team must understand how to get the most out of the technology.
They must understand appropriate usage patterns, how to optimize queries, tune for performance,
and so on. Factor this in when considering storage technologies.

Use compensating transactions. A side effect of polyglot persistence is that single transaction
might write data to multiple stores. If something fails, use compensating transactions to undo any
steps that already completed.

Look at bounded contexts. Bounded context is a term from domain driven design. A bounded
context is an explicit boundary around a domain model, and defines which parts of the domain
the model applies to. Ideally, a bounded context maps to a subdomain of the business domain.
The bounded contexts in your system are a natural place to consider polyglot persistence. For
example, “products” may appear in both the Product Catalog subdomain and the Product Inventory
subdomain, but it’s very likely that these two subdomains have different requirements for storing,
updating, and querying products.

CHAPTER 3h | Use the best data store for the job

78

3i

Design for evolution
An evolutionary design is key for continuous innovation

Recommendations

All successful applications change over time, whether to fix bugs, add new features, bring in new
technologies, or make existing systems more scalable and resilient. If all the parts of an application
are tightly coupled, it becomes very hard to introduce changes into the system. A change in one part
of the application may break another part, or cause changes to ripple through the entire codebase.

This problem is not limited to monolithic applications. An application can be decomposed into
services, but still exhibit the sort of tight coupling that leaves the system rigid and brittle. But when
services are designed to evolve, teams can innovate and continuously deliver new features.

Microservices are becoming a popular way to achieve an evolutonary design, because they address
many of the considerations listed here.

Enforce high cohesion and loose coupling. A service is cohesive if it provides functionality that
logically belongs together. Services are loosely coupled if you can change one service without
changing the other. High cohesion generally means that changes in one function will require changes
in other related functions. If you find that updating a service requires coordinated updates to other
services, it may be a sign that your services are not cohesive. One of the goals of domain-driven
design (DDD) is to identity those boundaries.

Encapsulate domain knowledge. When a client consumes a service, the responsibility for enforcing
the business rules of the domain should not fall on the client. Instead, the service should encapsulate
all of the domain knowledge that falls under its responsibility. Otherwise, every client has to enforce
the business rules, and you end up with domain knowledge spread across different parts of the
application.

Use asynchronous messaging. Asynchronous messaging is a way to decouple the message
producer from the consumer. The producer does not depend on the consumer responding to the
message or taking any particular action. With a pub/sub architecture, the producer may not even
know who is consuming the message. New services can easily consume the messages without any
modifications to the producer.

Don’t build domain knowledge into a gateway. Gateways can be useful in a microservices
architecture, for things like request routing, protocol translation, load balancing, or authentication.
However, the gateway should be restricted to this sort of infrastructure functionality. It should not
implement any domain knowledge, to avoid becoming a heavy dependency.

Expose open interfaces. Avoid creating custom translation layers that sit between services. Instead,
a service should expose an API with a well-defined API contract. The API should be versioned, so that

CHAPTER 3i | Design for evolution

79

you can evolve the API while maintaining backward compatibility. That way, you can update a service
without coordinating updates to all of the upstream services that depend on it. Public facing services
should expose a RESTful API over HTTP. Backend services might use an RPC-style messaging protocol
for performance reasons.

Design and test against service contracts. When services expose well-defined APIs, you can
develop and test against those APIs. That way, you can develop and test an individual service without
spinning up all of its dependent services. (Of course, you would still perform integration and load
testing against the real services.)

Abstract infrastructure away from domain logic. Don’t let domain logic get mixed up with
infrastructure-related functionality, such as messaging or persistence. Otherwise, changes in the
domain logic will require updates to the infrastructure layers and vice versa.

Offload cross-cutting concerns to a separate service. For example, if several services need to
authenticate requests, you could move this functionality into its own service. Then you could evolve
the authentication service — for example, by adding a new authentication flow — without touching
any of the services that use it.

Deploy services independently. When the DevOps team can deploy a single service independently
of other services in the application, updates can happen more quickly and safely. Bug fixes and new
features can be rolled out at a more regular cadence. Design both the application and the release
process to support independent updates.

CHAPTER 3i | Design for evolution

80

3j

Build for the needs
of business
Every design decision must be justified by a business requirement.

Recommendations

This design principle may seem obvious, but it’s crucial to keep in mind when designing a solution.
Do you anticipate millions of users, or a few thousand? Is a one hour application outage acceptable?
Do you expect large bursts in traffic, or a very predictable workload? Ultimately, every design
decision must be justified by a business requirement.

Define business objectives. including the recovery time objective (RTO), recovery point objective
(RPO), and maximum tolerable outage (MTO). These numbers should inform decisions about the
architecture. For example, to achieve a low RTO, you might implement automated failover to a
secondary region. But if your solution can tolerate a higher RTO, that degree of redundancy might be
unnecessary.

Document service level agreements (SLA) and service level objectives (SLO). Including
availability and performance metrics. You might build a solution that delivers 99.95% availability. Is
that enough? The answer is a business decision.

Model the application around the business domain. Start by analyzing the business requirements.
Use these requirements to model the application. Consider using a domain-driven design (DDD)
approach to create domain models that reflect the business processes and use cases.

Capture both functional and nonfunctional requirements. Functional requirements let you judge
whether the application does the right thing. Nonfunctional requirements let you judge whether the
application does those things well. In particular, make sure that you understand your requirements
for scalability, availability, and latency. These requirements will influence design decisions and choice
of technology.

Decompose by workload. The term “workload” in this context means a discrete capability or
computing task, which can be logically separated from other tasks. Different workloads may have
different requirements for availability, scalability, data consistency, and disaster recovery.

Plan for growth. A solution might meet your current needs, in terms of number of users, volume of
transactions, data storage, and so forth. However, a robust application can handle growth without
major architectural changes. See Design to scale out and Partition around limits. Also consider that
your business model and business requirements will likely change over time. If an application’s

CHAPTER 3j | Build for the needs of business

81

service model and data models are too rigid, it becomes hard to evolve the application for new use
cases and scenarios. See Design for Evolution.

Manage costs. In a traditional on-premises application, you pay upfront for hardware (CAPEX). In
a cloud application, you pay for the resources that you consume. Make sure that you understand
the pricing model for the services that you consume. The total cost will include network bandwidth
usage, storage, IP addresses, service consumption, and other factors. See Azure pricing for more
information. Also consider your operations costs. In the cloud, you don’t have to manage the
hardware or other infrastructure, but you still need to manage your applications, including DevOps,
incident response, disaster recovery, and so forth.

CHAPTER 3j | Build for the needs of business

82

3k

Designing resilient
applications for
Azure
Rather than purchasing higher-end hardware to scale up, in a cloud environment you must scale out.
Costs for cloud environments are kept low and the goal is to minimize the effect of a failure.

In a distributed system, failures will happen. Hardware can fail. The network can have transient
failures. Rarely, an entire service or region may experience a disruption, but even those must be
planned for.

Building a reliable application in the cloud is different than building a reliable application in an
enterprise setting. While historically you may have purchased higher-end hardware to scale up, in
a cloud environment you must scale out instead of scaling up. Costs for cloud environments are
kept low through the use of commodity hardware. Instead of focusing on preventing failures and
optimizing “mean time between failures,” in this new environment the focus shifts to “mean time to
restore.” The goal is to minimize the effect of a failure.

This article provides an overview of how to build resilient applications in Microsoft Azure. It
starts with a definition of the term resiliency and related concepts. Then it describes a process for
achieving resiliency, using a structured approach over the lifetime of an application, from design and
implementation to deployment and operations.

What is resiliency?
Resiliency is the ability of a system to recover from failures and continue to function. It’s not about
avoiding failures, but responding to failures in a way that avoids downtime or data loss. The goal of
resiliency is to return the application to a fully functioning state following a failure.

Two important aspects of resiliency are high availability and disaster recovery.

High availability (HA) is the ability of the application to continue running in a healthy state,
without significant downtime. By “healthy state,” we mean the application is responsive, and users
can connect to the application and interact with it.

•

CHAPTER 3k | Designing resilient applications for Azure

83

Disaster recovery (DR) is the ability to recover from rare but major incidents: non-transient,
wide-scale failures, such as service disruption that affects an entire region. Disaster recovery
includes data backup and archiving, and may include manual intervention, such as restoring a
database from backup.

One way to think about HA versus DR is that DR starts when the impact of a fault exceeds the ability
of the HA design to handle it. For example, putting several VMs behind a load balancer will provide
availability if one VM fails, but not if they all fail at the same time.

When you design an application to be resilient, you have to understand your availability
requirements. How much downtime is acceptable? This is partly a function of cost. How much will
potential downtime cost your business? How much should you invest in making the application
highly available? You also have to define what it means for the application to be available. For
example, is the application “down” if a customer can submit an order but the system cannot process
it within the normal timeframe? Also consider the probability of a particular type of outage occurring,
and whether a mitigation strategy is cost-effective.

Another common term is business continuity (BC), which is the ability to perform essential business
functions during and after adverse conditions, such as a natural disaster or a downed service. BC
covers the entire operation of the business, including physical facilities, people, communications,
transportation, and IT. This article focuses on cloud applications, but resilience planning must be
done in the context of overall BC requirements. For more information, see the [Contingency Planning
Guide][capacity-planning-guide] from the National Institute of Science and Technology (NIST).

•

Process to achieve resiliency
Resiliency is not an add-on. It must be designed into the system and put into operational practice.
Here is a general model to follow:

Define your availability requirements, based on business needs.

Design the application for resiliency. Start with an architecture that follows proven practices, and
then identify the possible failure points in that architecture.

Implement strategies to detect and recover from failures.

Test the implementation by simulating faults and triggering forced failovers.

Deploy the application into production using a reliable, repeatable process.

Monitor the application to detect failures. By monitoring the system, you can gauge the health
of the application and respond to incidents if necessary.

Respond if there are incidents that require manual interventions.

In the remainder of this article, we discuss each of these steps in more detail.

1.

2.

3.

4.

5.

6.

7.

Defining your resiliency requirements
Resiliency planning starts with business requirements. Here are some approaches for thinking about
resiliency in those terms.

CHAPTER 3k | Designing resilient applications for Azure

84

Many cloud solutions consist of multiple application workloads. The term “workload” in this context
means a discrete capability or computing task, which can be logically separated from other tasks,
in terms of business logic and data storage requirements. For example, an e-commerce app might
include the following workloads:

Browse and search a product catalog.
Create and track orders.
View recommendations.

These workloads might have different requirements for availability, scalability, data consistency,
disaster recovery, and so forth. Again, these are business decisions.

Also consider usage patterns. Are there certain critical periods when the system must be available?
For example, a tax-filing service can’t go down right before the filing deadline, a video streaming
service must stay up during a big sports event, and so on. During the critical periods, you might have
redundant deployments across several regions, so the application could fail over if one region failed.
However, a multi-region deployment is more expensive, so during less critical times, you might run
the application in a single region.

Two important metrics to consider are the recovery time objective and recovery point objective.

Decompose by workload

RTO and RPO

•
•
•

Recovery time objective (RTO) is the maximum acceptable time that an application can
be unavailable after an incident. If your RTO is 90 minutes, you must be able to restore the
application to a running state within 90 minutes from the start of a disaster. If you have a very
low RTO, you might keep a second deployment continually running on standby, to protect
against a regional outage.

Recovery point objective (RPO) is the maximum duration of data loss that is acceptable during
a disaster. For example, if you store data in a single database, with no replication to other
databases, and perform hourly backups, you could lose up to an hour of data.

RTO and RPO are business requirements. Conducting a risk assessment can help you define the
application’s RTO and RPO. Another common metric is mean time to recover (MTTR), which is the
average time that it takes to restore the application after a failure. MTTR is an empirical fact about
a system. If MTTR exceeds the RTO, then a failure in the system will cause an unacceptable business
disruption, because it won’t be possible to restore the system within the defined RTO.

•

•

In Azure, the Service Level Agreement (SLA) describes Microsoft’s commitments for uptime and
connectivity. If the SLA for a particular service is 99.9%, it means you should expect the service to be
available 99.9% of the time.

SLAs

Notes:

The Azure SLA also includes provisions for obtaining a service credit if the SLA is not met, along with
specific definitions of “availability” for each service. That aspect of the SLA acts as an enforcement policy.

CHAPTER 3k | Designing resilient applications for Azure

85

Of course, higher availability is better, everything else being equal. But as you strive for more 9s, the
cost and complexity to achieve that level of availability grows. An uptime of 99.99% translates to
about 5 minutes of total downtime per month. Is it worth the additional complexity and cost to reach
five 9s? The answer depends on the business requirements.

Here are some other considerations when defining an SLA:

To achieve four 9’s (99.99%), you probably can’t rely on manual intervention to recover from
failures. The application must be self-diagnosing and self-healing.

Beyond four 9’s, it is challenging to detect outages quickly enough to meet the SLA.

Think about the time window that your SLA is measured against. The smaller the window, the
tighter the tolerances. It probably doesn’t make sense to define your SLA in terms of hourly or
daily uptime.

Consider an App Service web app that writes to Azure SQL Database. At the time of this writing,
these Azure services have the following SLAs:

App Service Web Apps = 99.95%

SQL Database = 99.99%

Composite SLAs

•

•
•

•
•

What is the maximum downtime you would expect for this application? If either service fails, the
whole application fails. In general, the probability of each service failing is independent, so the
composite SLA for this application is 99.95% × 99.99% = 99.94%. That’s lower than the individual
SLAs, which isn’t surprising, because an application that relies on multiple services has more potential
failure points.

On the other hand, you can improve the composite SLA by creating independent fallback paths. For
example, if SQL Database is unavailable, put transactions into a queue, to be processed later.

SLAD owntime per week Downtime per month

99.9% 10.1 minutes 43.2 minutes8 .76 hours

99.95% 5 minutes 21.6 minutes4 .38 hours

99.99% 1.01 minutes4 .32 minutes 52.56 minutes

99.999% 6 seconds 25.9 seconds5 .26 minutes

99% 1.68 hours 7.2 hours 3.65 days

Downtime per year

CHAPTER 3k | Designing resilient applications for Azure

86

With this design, the application is still available even if it can’t connect to the database. However, it
fails if the database and the queue both fail at the same time. The expected percentage of time for a
simultaneous failure is 0.0001 × 0.001, so the composite SLA for this combined path is:

Database OR queue = 1.0 − (0.0001 × 0.001) = 99.99999%

The total composite SLA is:

Web app AND (database OR queue) = 99.95% × 99.99999% = ~99.95%

But there are tradeoffs to this approach. The application logic is more complex, you are paying for
the queue, and there may be data consistency issues to consider.

SLA for multi-region deployments. Another HA technique is to deploy the application in more than
one region, and use Azure Traffic Manager to fail over if the application fails in one region. For a two-
region deployment, the composite SLA is calculated as follows.

Let N be the composite SLA for the application deployed in one region. The expected chance that the
application will fail in both regions at the same time is (1 − N) × (1 − N).
Therefore,

Combined SLA for both regions = 1 − (1 − N)(1 − N) = N + (1 − N)N

•

•

•

Finally, you must factor in the SLA for Traffic Manager. At the time of this writing, the SLA for Traffic
Manager SLA is 99.99%.

Composite SLA = 99.99% × (combined SLA for both regions)

Also, failing over is not instantaneous and can result in some downtime during a failover. See Traffic
Manager endpoint monitoring and failover.

The calculated SLA number is a useful baseline, but it doesn’t tell the whole story about availability.
Often, an application can degrade gracefully when a non-critical path fails. Consider an application
that shows a catalog of books. If the application can’t retrieve the thumbnail image for the cover,
it might show a placeholder image. In that case, failing to get the image does not reduce the
application’s uptime, although it affects the user experience.

•

CHAPTER 3k | Designing resilient applications for Azure

https://azure.microsoft.com/en-us/support/legal/sla/traffic-manager/v1_0/
https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-monitoring
https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-monitoring

87

During the design phase, you should perform a failure mode analysis (FMA). The goal of an FMA is to
identify possible points of failure, and define how the application will respond to those failures.

How will the application detect this type of failure?
How will the application respond to this type of failure?
How will you log and monitor this type of failure?

For more information about the FMA process, with specific recommendations for Azure, see Azure
resiliency guidance: Failure mode analysis.

During the design phase, you should perform a failure mode analysis (FMA). The goal of an FMA is to
identify possible points of failure, and define how the application will respond to those failures.

How will the application detect this type of failure?
How will the application respond to this type of failure?
How will you log and monitor this type of failure?

For more information about the FMA process, with specific recommendations for Azure, see Azure
resiliency guidance: Failure mode analysis.

Designing for resiliency

•
•
•

•
•
•

Failure mode

Service is unavailable

Throttling

Authentication

Slow response

HTTP 5xx

HTTP 429 (Too Many Requests)

HTTP 401 (Unauthorized)

Request times out

Detection strategy

This section provides a survey of some common resiliency strategies. Most of these are not limited
to a particular technology. The descriptions in this section summarize the general idea behind each
technique, with links to further reading.

Resiliency strategies

Transient failures can be caused by momentary loss of network connectivity, a dropped database
connection, or a timeout when a service is busy. Often, a transient failure can be resolved simply by
retrying the request. For many Azure services, the client SDK implements automatic retries, in a way that is
transparent to the caller; see Retry service specific guidance.

Each retry attempt adds to the total latency. Also, too many failed requests can cause a bottleneck, as
pending requests accumulate in the queue. These blocked requests might hold critical system resources
such as memory, threads, database connections, and so on, which can cause cascading failures. To avoid
this, increase the delay between each retry attempt, and limit the total number of failed requests.

Retry transient failures

CHAPTER 3k | Designing resilient applications for Azure

https://docs.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis
https://docs.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis
https://docs.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis
https://docs.microsoft.com/en-us/azure/architecture/resiliency/failure-mode-analysis
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific

88

For more information, see Retry Pattern.

For scalability, a cloud application should be able to scale out by adding more instances. This
approach also improves resiliency, because unhealthy instances can be removed from rotation.

For example:

Put two or more VMs behind a load balancer. The load balancer distributes traffic to all the VMs.
See Run load-balanced VMs for scalability and availability.

Scale out an Azure App Service app to multiple instances. App Service automatically balances
load across instances. See Basic web application.

Use Azure Traffic Manager to distribute traffic across a set of endpoints.

Replicating data is a general strategy for handling non-transient failures in a data store. Many storage
technologies provide built-in replication, including Azure SQL Database, Cosmos DB, and Apache
Cassandra.

It’s important to consider both the read and write paths. Depending on the storage technology, you
might have multiple writable replicas, or a single writable replica and multiple read-only replicas.

To maximize availability, replicas can be placed in multiple regions. However, this increases the
latency when replicating the data. Typically, replicating across regions is done asynchronously, which
implies an eventual consistency model and potential data loss if a replica fails.

If a service fails and there is no failover path, the application may be able to degrade gracefully while
still providing an acceptable user experience.
For example:

Put a work item on a queue, to be handled later.
Return an estimated value.
Use locally cached data.
Show the user an error message. (This option is better than having the application stop
responding to requests.)

Load balance across instances

Replicate data

Degrade gracefully

•

•

•

•
•
•
•

CHAPTER 3k | Designing resilient applications for Azure

https://docs.microsoft.com/en-us/azure/architecture/patterns/retry

89

Sometimes a small number of users create excessive load. That can have an impact on other users,
reducing the overall availability of your application.

When a single client makes an excessive number of requests, the application might throttle the client
for a certain period of time. During the throttling period, the application refuses some or all of the
requests from that client (depending on the exact throttling strategy). The threshold for throttling
might depend on the customer’s service tier.

Throttling does not imply the client was necessarily acting maliciously, only that it exceeded its
service quota. In some cases, a consumer might consistently exceed their quota or otherwise behave
badly. In that case, you might go further and block the user. Typically, this is done by blocking an API
key or an IP address range.

For more information, see Throttling Pattern.

The Circuit Breaker pattern can prevent an application from repeatedly trying an operation that is
likely to fail. This is similar to a physical circuit breaker, a switch that interrupts the flow of current
when a circuit is overloaded.

The circuit breaker wraps calls to a service. It has three states:

Closed. This is the normal state. The circuit breaker sends requests to the service, and a counter
tracks the number of recent failures. If the failure count exceeds a threshold within a given time
period, the circuit breaker switches to the Open state.

Open. In this state, the circuit breaker immediately fails all requests, without calling the service.
The application should use a mitigation path, such as reading data from a replica or simply
returning an error to the user. When the circuit breaker switches to Open, it starts a timer. When
the timer expires, the circuit breaker switches to the Half-open state.

Half-open. In this state, the circuit breaker lets a limited number of requests go through to the
service. If they succeed, the service is assumed to be recovered, and the circuit breaker switches
back to the Closed state. Otherwise, it reverts to the Open state. The Half-Open state prevents a
recovering service from suddenly being inundated with requests.

For more information, see Circuit Breaker Pattern.

Throttle high-volume users

Use a circuit breaker

•

•

•

Applications may experience sudden spikes in traffic, which can overwhelm services on the backend.
If a backend service cannot respond to requests quickly enough, it may cause requests to queue
(back up), or cause the service to throttle the application.

To avoid this, you can use a queue as a buffer. When there is a new work item, instead of calling the
backend service immediately, the application queues a work item to run asynchronously. The queue
acts as a buffer that smooths out peaks in the load.

For more information, see Queue-Based Load Leveling Pattern.

Use load leveling to smooth out spikes in traffic

CHAPTER 3k | Designing resilient applications for Azure

https://docs.microsoft.com/en-us/azure/architecture/patterns/throttling
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling

90

Failures in one subsystem can sometimes cascade, causing failures in other parts of the application.
This can happen if a failure causes some resources, such as threads or sockets, not to get freed in a
timely manner, leading to resource exhaustion.

To avoid this, you can partition a system into isolated groups, so that a failure in one partition does
not bring down the entire system. This technique is sometimes called the Bulkhead pattern.

Examples:

Partition a database (for example, by tenant) and assign a separate pool of web server instances
for each partition.

Use separate thread pools to isolate calls to different services. This helps to prevent cascading
failures if one of the services fails. For an example, see the Netflix Hystrix library.

Use containers to limit the resources available to a particular subsystem.

Isolate critical resources

•

•

•

A compensating transaction is a transaction that undoes the effects of another completed
transaction.

In a distributed system, it can be very difficult to achieve strong transactional consistency.
Compensating transactions are a way to achieve consistency by using a series of smaller, individual
transactions that can be undone at each step.

For example, to book a trip, a customer might reserve a car, a hotel room, and a flight. If any of these
steps fails, the entire operation fails. Instead of trying to use a single distributed transaction for the
entire operation, you can define a compensating transaction for each step. For example, to undo a
car reservation, you cancel the reservation. In order to complete the whole operation, a coordinator
executes each step. If any step fails, the coordinator applies compensating transactions to undo any
steps that were completed.

For more information, see Compensating Transaction Pattern.

Apply compensating transactions

CHAPTER 3k | Designing resilient applications for Azure

https://medium.com/netflix-techblog/introducing-hystrix-for-resilience-engineering-13531c1ab362
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction

91

Generally, you can’t test resiliency in the same way that you test application functionality (by running
unit tests and so on). Instead, you must test how the end-to-end workload performs under failure
conditions which only occur intermittently.

Testing is an iterative process. Test the application, measure the outcome, analyze and address any
failures that result, and repeat the process.

Fault injection testing. Test the resiliency of the system during failures, either by triggering actual
failures or by simulating them. Here are some common failure scenarios to test:

Shut down VM instances.
Crash processes.
Expire certificates.
Change access keys.
Shut down the DNS service on domain controllers.
Limit available system resources, such as RAM or number of threads.
Unmount disks.
Redeploy a VM.

Measure the recovery times and verify that your business requirements are met. Test combinations of
failure modes as well. Make sure that failures don’t cascade, and are handled in an isolated way.

This is another reason why it’s important to analyze possible failure points during the design phase.
The results of that analysis should be inputs into your test plan.

Load testing. Load test the application using a tool such as Visual Studio Team Services or Apache
JMeter. Load testing is crucial for identifying failures that only happen under load, such as the
backend database being overwhelmed or service throttling. Test for peak load, using production
data or synthetic data that is as close to production data as possible. The goal is to see how the
application behaves under real-world conditions.

Testing for resiliency

•
•
•
•
•
•
•
•

Once an application is deployed to production, updates are a possible source of errors. In the worst
case, a bad update can cause downtime. To avoid this, the deployment process must be predictable
and repeatable. Deployment includes provisioning Azure resources, deploying application code, and
applying configuration settings. An update may involve all three, or a subset.

The crucial point is that manual deployments are prone to error. Therefore, it’s recommended to have
an automated, idempotent process that you can run on demand, and re-run if something fails.

Use Resource Manager templates to automate provisioning of Azure resources.
Use Azure Automation Desired State Configuration (DSC) to configure VMs.
Use an automated deployment process for application code.

Resilient deployment

•
•
•

CHAPTER 3k | Designing resilient applications for Azure

https://docs.microsoft.com/en-us/azure/automation/automation-dsc-overview

92

Two concepts related to resilient deployment are infrastructure as code and immutable infrastructure.

Infrastructure as code is the practice of using code to provision and configure infrastructure.
Infrastructure as code may use a declarative approach or an imperative approach (or a
combination of both). Resource Manager templates are an example of a declarative approach.
PowerShell scripts are an example of an imperative approach.

Immutable infrastructure is the principle that you shouldn’t modify infrastructure after it’s
deployed to production. Otherwise, you can get into a state where ad hoc changes have been
applied, so it’s hard to know exactly what changed, and hard to reason about the system.

•

•

Another question is how to roll out an application update. We recommend techniques such as
blue-green deployment or canary releases, which push updates in highly controlled way to minimize
possible impacts from a bad deployment.

Blue-green deployment is a technique where an update is deployed into a production
environment separate from the live application. After you validate the deployment, switch the
traffic routing to the updated version. For example, Azure App Service Web Apps enables this
with staging slots.

Canary releases are similar to blue-green deployments. Instead of switching all traffic to the
updated version, you roll out the update to a small percentage of users, by routing a portion
of the traffic to the new deployment. If there is a problem, back off and revert to the old
deployment. Otherwise, route more of the traffic to the new version, until it gets 100% of the
traffic.

Whatever approach you take, make sure that you can roll back to the last-known-good deployment,
in case the new version is not functioning. Also, if errors occur, the application logs must indicate
which version caused the error.

Monitoring and diagnostics are crucial for resiliency. If something fails, you need to know that it
failed, and you need insights into the cause of the failure.

Monitoring a large-scale distributed system poses a significant challenge. Think about an
application that runs on a few dozen VMs — it’s not practical to log into each VM, one at a
time, and look through log files, trying to troubleshoot a problem. Moreover, the number of VM
instances is probably not static. VMs get added and removed as the application scales in and out,
and occasionally an instance may fail and need to be reprovisioned. In addition, a typical cloud
application might use multiple data stores (Azure storage, SQL Database, Cosmos DB, Redis cache),
and a single user action may span multiple subsystems.

You can think of the monitoring and diagnostics process as a pipeline with several distinct stages:

Monitoring and diagnostics

•

•

CHAPTER 3k | Designing resilient applications for Azure

https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CanaryRelease.html

93

Instrumentation. The raw data for monitoring and diagnostics comes from a variety of sources,
including application logs, web server logs, OS performance counters, database logs, and
diagnostics built into the Azure platform. Most Azure services have a diagnostics feature that you
can use to determine the cause of problems.

Collection and storage. Raw instrumentation data can be held in various locations and with
various formats (e.g., application trace logs, IIS logs, performance counters). These disparate
sources are collected, consolidated, and put into reliable storage.

Analysis and diagnosis. After the data is consolidated, it can be analyzed to troubleshoot issues
and provide an overall view of application health.

Visualization and alerts. In this stage, telemetry data is presented in such a way that an
operator can quickly notice problems or trends. Example include dashboards or email alerts.

Monitoring is not the same as failure detection. For example, your application might detect a
transient error and retry, resulting in no downtime. But it should also log the retry operation, so that
you can monitor the error rate, in order to get an overall picture of application health.

Application logs are an important source of diagnostics data. Best practices for application logging
include:

Log in production. Otherwise, you lose insight where you need it most.

Log events at service boundaries. Include a correlation ID that flows across service boundaries.
If a transaction flows through multiple services and one of them fails, the correlation ID will help
you pinpoint why the transaction failed.

Use semantic logging, also known as structured logging. Unstructured logs make it hard to
automate the consumption and analysis of the log data, which is needed at cloud scale.

Use asynchronous logging. Otherwise, the logging system itself can cause the application to fail
by causing requests to back up, as they block while waiting to write a logging event.

Application logging is not the same as auditing. Auditing may be done for compliance or
regulatory reasons. As such, audit records must be complete, and it’s not acceptible to drop any
while processing transactions. If an application requires auditing, this should be kept separate
from diagnostics logging.

For more information about monitoring and diagnostics, see Monitoring and diagnostics guidance.

•

•

•

•

•
•

•

•

•

Previous sections have focused on automated recovery strategies, which are critical for high
availability. However, sometimes manual intervention is needed.

Alerts. Monitor your application for warning signs that may require proactive intervention. For
example, if you see that SQL Database or Cosmos DB consistently throttles your application, you
might need to increase your database capacity or optimize your queries. In this example, even
though the application might handle the throttling errors transparently, your telemetry should
still raise an alert so that you can follow up.

Manual failover. Some systems cannot fail over automatically and require a manual failover.

Manual failure responses

•

•

CHAPTER 3k | Designing resilient applications for Azure

https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring

94

This article discussed resiliency from a holistic perspective, emphasizing some of the unique
challenges of the cloud. These include the distributed nature of cloud computing, the use of
commodity hardware, and the presence of transient network faults.

Here are the major points to take away from this article:

Resiliency leads to higher availability, and lower mean time to recover from failures.
Achieving resiliency in the cloud requires a different set of techniques from traditional on-
premises solutions.
Resiliency does not happen by accident. It must be designed and built in from the start.
Resiliency touches every part of the application lifecycle, from planning and coding to operations.
Test and monitor.

Summary

Operational readiness testing. If your application fails over to a secondary region, you should
perform an operational readiness test before you fail back to the primary region. The test should
verify that the primary region is healthy and ready to receive traffic again.

Data consistency check. If a failure happens in a data store, there may be data inconsistencies
when the store becomes available again, especially if the data was replicated.

Restoring from backup. For example, if SQL Database experiences a regional outage, you can
geo-restore the database from the latest backup.

Document and test your disaster recovery plan. Evaluate the business impact of application failures.
Automate the process as much as possible, and document any manual steps, such as manual failover
or data restoration from backups. Regularly test your disaster recovery process to validate and
improve the plan.

•

•

•

•
•

•
•
•

CHAPTER 3k | Designing resilient applications for Azure

95

4

Design
your Azure
application: Use
these pillars of
quality
Scalability, availability, resiliency, management, and security are the five
pillars of quality software. Focusing on these pillars will help you design
a successful cloud application. You can use the checklists in this guide to
review your application against these pillars.

CHAPTER 4 | Design your Azure application: Use these pillars of quality

96

Scalability

Availability

Resiliency

Management

Security

Design the system to be able scale out by adding new instances.

Define a service level objective (SLO) that clearly defines the expected
availability, and how it is measured. Use the critical path to define. An extra
percentage point of availability can add up to additional hours or days of
uptime over a year.

Cloud applications have occasional failures and must be built to recover
from them. Build resiliency mitigations into your application at all levels.
Focus on tactical mitigations first, and include monitoring.

Automate deployments and make them a fast and routine process to speed
the release of new features or bug fixes. Build in roll back or roll forward
operations, and include monitoring and diagnostics.

Build identity management, infrastructure protection, and data sovereignty
and encryption into your application and into your DevOps processes.

Pillar Description

Scalability
Scalability is the ability of a system to handle increased load. There are two main ways that an
application can scale. Vertical scaling (scaling up) means increasing the capacity of a resource, for
example by using a larger VM size. Horizontal scaling (scaling out) is adding new instances of a
resource, such as VMs or database replicas.

Horizontal scaling has significant advantages over vertical scaling:
True cloud scale. Applications can be designed to run on hundreds or even thousands of nodes,
reaching scales that are not possible on a single node.
Horizontal scale is elastic. You can add more instances if load increases, or remove them during
quieter periods.
Scaling out can be triggered automatically, either on a schedule or in response to changes in
load.
Scaling out may be cheaper than scaling up. Running several small VMs can cost less than a
single large VM.
Horizontal scaling can also improve resiliency, by adding redundancy. If an instance goes down,
the application keeps running.

An advantage of vertical scaling is that you can do it without making any changes to the application.
But at some point you’ll hit a limit, where you can’t scale up anymore. At that point, any further
scaling must be horizontal.

Horizontal scale must be designed into the system. For example, you can scale out VMs by placing
them behind a load balancer. But each VM in the pool must be able to handle any client request, so
the application must be stateless or store state externally (say, in a distributed cache). Managed PaaS
services often have horizontal scaling and auto-scaling built in. The ease of scaling these services is a
major advantage of using PaaS services.

•

•

•

•

•

CHAPTER 4 | Design your Azure application: Use these pillars of quality

97

However, just adding more instances doesn’t mean an application will scale. It might simply push the
bottleneck somewhere else. For example, if you scale a web front-end to handle more client requests,
that might trigger lock contentions in the database. You would then need to consider additional
measures, such as optimistic concurrency or data partitioning, to enable more throughput to the
database.

Always conduct performance and load testing to find these potential bottlenecks. The stateful parts
of a system, such as databases, are the most common cause of bottlenecks, and require careful
design to scale horizontally. Resolving one bottleneck may reveal other bottlenecks elsewhere.

Use the Scalability checklist to review your design from a scalability standpoint.

Scalability guidance
Design patterns for scalability and performance

Best practices: Autoscaling, Background jobs, Caching, CDN, Data partitioning

Best practices
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/background-jobs
https://docs.microsoft.com/en-us/azure/architecture/best-practices/caching
https://docs.microsoft.com/en-us/azure/architecture/best-practices/cdn
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning

•
•

•
•
•
•
•

CHAPTER 4 | Design your Azure application: Use these pillars of quality

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/background-jobs
https://docs.microsoft.com/en-us/azure/architecture/best-practices/caching
https://docs.microsoft.com/en-us/azure/architecture/best-practices
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning

98

Availability
Availability is the proportion of time that the system is functional and working. It is usually measured
as a percentage of uptime. Application errors, infrastructure problems, and system load can all reduce
availability.

A cloud application should have a service level objective (SLO) that clearly defines the expected
availability and how the availability is measured. When defining availability, look at the critical path.
The web front-end might be able to service client requests, but if every transaction fails because it
can’t connect to the database, the application is not available to users.

Availability is often described in terms of “9s” — for example, “four 9s” means 99.99% uptime. The
following table shows the potential cumulative downtime at different availability levels.

Notice that 99% uptime could translate to an almost 2-hour service outage per week. For many
applications, especially consumer-facing applications, that is not an acceptable SLO. On the other
hand, five 9s (99.999%) means no more than 5 minutes of downtime in a year. It’s challenging enough
just detecting an outage that quickly, let alone resolving the issue. To get very high availability
(99.99% or higher), you can’t rely on manual intervention to recover from failures. The application
must be self-diagnosing and self-healing, which is where resiliency becomes crucial.

Scalability guidance

Best practices

Design patterns for availability

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/background-jobs

•

•
•

SLAD owntime per week Downtime per month

99.9% 10.1 minutes 43.2 minutes8 .76 hours

99.95% 5 minutes 21.6 minutes4 .38 hours

99.99% 1.01 minutes4 .32 minutes 52.56 minutes

99.999% 6 seconds 25.9 seconds5 .26 minutes

99% 1.68 hours 7.2 hours 3.65 days

Downtime per year

CHAPTER 4 | Design your Azure application: Use these pillars of quality

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling

99

Resiliency
Resiliency is the ability of the system to recover from failures and continue to function. The goal of
resiliency is to return the application to a fully functioning state after a failure occurs. Resiliency is
closely related to availability.

In traditional application development, there has been a focus on reducing mean time between
failures (MTBF). Effort was spent trying to prevent the system from failing. In cloud computing, a
different mindset is required, due to several factors:

Distributed systems are complex, and a failure at one point can potentially cascade throughout
the system.

Costs for cloud environments are kept low through the use of commodity hardware, so
occasional hardware failures must be expected.

Applications often depend on external services, which may become temporarily unavailable or
throttle high-volume users.

Today’s users expect an application to be available 24/7 without ever going offline.

All of these factors mean that cloud applications must be designed to expect occasional failures and
recover from them. Azure has many resiliency features already built into the platform. For example,

Azure Storage, SQL Database, and Cosmos DB all provide built-in data replication, both within a
region and across regions.

Azure Managed Disks are automatically placed in different storage scale units, to limit the effects
of hardware failures.

VMs in an availability set are spread across several fault domains. A fault domain is a group
of VMs that share a common power source and network switch. Spreading VMs across fault
domains limits the impact of physical hardware failures, network outages, or power interruptions.

That said, you still need to build resiliency your application. Resiliency strategies can be applied at
all levels of the architecture. Some mitigations are more tactical in nature — for example, retrying a
remote call after a transient network failure. Other mitigations are more strategic, such as failing over
the entire application to a secondary region. Tactical mitigations can make a big difference. While it’s
rare for an entire region to experience a disruption, transient problems such as network congestion
are more common — so target these first. Having the right monitoring and diagnostics is also
important, both to detect failures when they happen, and to find the root causes.

When designing an application to be resilient, you must understand your availability requirements.
How much downtime is acceptable? This is partly a function of cost. How much will potential
downtime cost your business? How much should you invest in making the application highly
available?

Use the Resiliency checklist to review your design from a resiliency standpoint.

•

•

•

•

•

•

•

CHAPTER 4 | Design your Azure application: Use these pillars of quality

100

Resiliency guidance

Best practices

For information about designing resilient applications for Azure, go to https://docs.microsoft.
com/en-us/azure/architecture/resiliency/index.
Design patterns for resiliency
Best practices: Transient fault handling, Retry guidance for specific services

https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults

https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific

•

•
•

•
•

Management and DevOps
This pillar covers the operations processes that keep an application running in production.
Deployments must be reliable and predictable. They should be automated to reduce the chance of
human error. They should be a fast and routine process, so they don’t slow down the release of new
features or bug fixes. Equally important, you must be able to quickly roll back or roll forward if an
update has problems.

Monitoring and diagnostics are crucial. For best practices for monitoring and diagnostics, go to
https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring. Cloud applications
run in a remote datacenter where you do not have full control of the infrastructure or, in some cases,
the operating system. In a large application, it’s not practical to log into VMs to troubleshoot an
issue or sift through log files. With PaaS services, there may not even be a dedicated VM to log into.
Monitoring and diagnostics give insight into the system, so that you know when and where failures
occur. All systems must be observable. Use a common and consistent logging schema that lets you
correlate events across systems.

The monitoring and diagnostics process has several distinct phases:

Instrumentation. Generating the raw data, from application logs, web server logs, diagnostics
built into the Azure platform, and other sources.
Collection and storage. Consolidating the data into one place.
Analysis and diagnosis. To troubleshoot issues and see the overall health.
Visualization and alerts. Using telemetry data to spot trends or alert the operations team.

Use the DevOps checklist to review your design from a management and DevOps standpoint.

Management and DevOps guidance
Design patterns for management and monitoring

Best practices: Monitoring and diagnostics

•

•
•
•

•
•

CHAPTER 4 | Design your Azure application: Use these pillars of quality

https://docs.microsoft.com/en-us/azure/architecture/resiliency/index
https://docs.microsoft.com/en-us/azure/architecture/resiliency/index
https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://docs.microsoft.com/en-us/azure/architecture/best-practices/transient-faults
https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring

101

Security
You must think about security throughout the entire lifecycle of an application, from design and
implementation to deployment and operations. The Azure platform provides protections against a
variety of threats, such as network intrusion and DDoS attacks. But you still need to build security into
your application and into your DevOps processes.

Here are some broad security areas to consider.

Identity management

Protecting your infrastructure

Consider using Azure Active Directory (Azure AD) to authenticate and authorize users. Azure AD
is a fully managed identity and access management service. You can use it to create domains that
exist purely on Azure, or integrate with your on-premises Active Directory identities. Azure AD
also integrates with Office365, Dynamics CRM Online, and many third-party SaaS applications.
For consumer-facing applications, Azure Active Directory B2C lets users authenticate with their
existing social accounts (such as Facebook, Google, or LinkedIn), or create a new user account that is
managed by Azure AD.

If you want to integrate an on-premises Active Directory environment with an Azure network, several
approaches are possible, depending on your requirements. For more information, see our Identity
Management reference architectures.

Control access to the Azure resources that you deploy. Every Azure subscription has a trust
relationship with an Azure AD tenant. Use Role-Based Access Control (RBAC) to grant users within
your organization the correct permissions to Azure resources. Grant access by assigning RBAC role
to users or groups at a certain scope. The scope can be a subscription, a resource group, or a single
resource. Audit all changes to infrastructure. For more information, go to https://docs.microsoft.com/
en-us/azure/active- directory/.

Application security

Data sovereignty and encryption

In general, the security best practices for application development still apply in the cloud. These
include things like using SSL everywhere, protecting against CSRF and XSS attacks, preventing SQL
injection attacks, and so on.

Cloud applications often use managed services that have access keys. Never check these into source
control. Consider storing application secrets in Azure Key Vault.

Make sure that your data remains in the correct geopolitical zone when using Azure’s highly available.
Azure’s geo-replicated storage uses the concept of a paired region in the same geopolitical region.

Use Key Vault to safeguard cryptographic keys and secrets. By using Key Vault, you can encrypt
keys and secrets by using keys that are protected by hardware security modules (HSMs). Many
Azure storage and DB services support data encryption at rest, including Azure Storage, Azure SQL
Database, Azure SQL Data Warehouse, and Cosmos DB.

CHAPTER 4 | Design your Azure application: Use these pillars of quality

https://docs.microsoft.com/en-us/azure/active- directory/.
https://docs.microsoft.com/en-us/azure/active- directory/.

102

Security resources

Azure Security Center provides integrated security monitoring and policy management across
your Azure subscriptions. Go to https://azure.microsoft.com/en-us/services/security-center/.

For information about how to protect your applications in the cloud, go to https://docs.microsoft.
com/en-us/azure/security/.

For more information, go to:

https://docs.microsoft.com/en-us/azure/storage/storage-service-encryption

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-always-encrypted-azure-key-
vault

https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-security-overview#data-
protection

https://docs.microsoft.com/en-us/azure/cosmos-db/database-security

•
•

•

•

•

•

CHAPTER 4 | Design your Azure application: Use these pillars of quality

https://azure.microsoft.com/en-us/services/security-center/
https://docs.microsoft.com/en-us/azure/security/
https://docs.microsoft.com/en-us/azure/security/
https://docs.microsoft.com/en-us/azure/storage/storage-service-encryption
https://docs.microsoft.com/en-us/azure/storage/storage-service-encryption
https://docs.microsoft.com/en-us/azure/storage/storage-service-encryption
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-security-overview#data-protection
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-security-overview#data-protection
https://docs.microsoft.com/en-us/azure/data-lake-store/data-lake-store-security-overview#data-protection

103

5

Design your Azure
application: Design
patterns
These design patterns are useful for building reliable, scalable, secure
applications in the cloud.
Each pattern describes the problem that the pattern addresses, considerations for applying the
pattern, and an example based on Microsoft Azure. Most of the patterns include code samples
or snippets that show how to implement the pattern on Azure. However, most of the patterns are
relevant to any distributed system, whether hosted on Azure or on other cloud platforms.

Availability

Challenges in cloud development

Availability defines the proportion of time that the system is functional and working. It will be
affected by system errors, infrastructure problems, malicious attacks, and system load. It is usually
measured as a percentage of uptime. Cloud applications typically provide users with a service level
agreement (SLA), which means that applications must be designed and implemented in a way that
maximizes availability.

Health Endpoint Monitoring

Queue-Based Load Leveling

Throttling

Implement functional checks in an application that external tools
can access through exposed endpoints at regular intervals.

Use a queue that acts as a buffer between a task and a service
that it invokes in order to smooth intermittent heavy loads.

Control the consumption of resources used by an instance of an
application, an individual tenant, or an entire service.

Pattern Summary

CHAPTER 5 | Design your Azure application: Design patterns

104

Data Management
Data management is the key element of cloud applications, and influences most of the quality
attributes. Data is typically hosted in different locations and across multiple servers for reasons such
as performance, scalability or availability, and this can present a range of challenges. For example,
data consistency must be maintained, and data will typically need to be synchronized across different
locations.

Cache-Aside

CQRS

Event Sourcing

Index Table

Materialized View

Sharding

Static Content Hosting

Valet Key

Load data on demand into a cache from a data store

Segregate operations that read data from operations that update data
by using separate interfaces.

Use an append-only store to record the full series of events that
describe actions taken on data in a domain.

Create indexes over the fields in data stores that are frequently
referenced by queries.

Generate prepopulated views over the data in one or more data stores
when the data isn’t ideally formatted for required query operations.

Divide a data store into a set of horizontal partitions or shards.

Deploy static content to a cloud-based storage service that can deliver
them directly to the client.

Use a token or key that provides clients with restricted direct access to a
specific resource or service.

Pattern Summary

Design and Implementation
Good design encompasses factors such as consistency and coherence in component design and
deployment, maintainability to simplify administration and development, and reusability to allow
components and subsystems to be used in other applications and in other scenarios. Decisions made
during the design and implementation phase have a huge impact on the quality and the total cost of
ownership of cloud hosted applications and services.

Ambassador

Anti-Corruption Layer

Backends for Frontends

Create helper services that send network requests on behalf of a
consumer service or application.

Implement a façade or adapter layer between a modern application and
a legacy system.

Create separate backend services to be consumed by specific frontend
applications or interfaces.

Pattern Summary

CHAPTER 5 | Design your Azure application: Design patterns

105

CQRS

Compute Resource
Consolidation

External Configuration
Store

Gateway Aggregation

Gateway Offloading

Gateway Routing

Leader Election

Pipes and Filters

Sidecar

Static Content Hosting

Strangler

Segregate operations that read data from operations that update data
by using separate interfaces.

Consolidate multiple tasks or operations into a single computational
unit

Move configuration information out of the application deployment
package to a centralized location.

Use a gateway to aggregate multiple individual requests into a single
request.

Offload shared or specialized service functionality to a gateway proxy.

Route requests to multiple services using a single endpoint.

Coordinate the actions performed by a collection of collaborating task
instances in a distributed application by electing one instance as the
leader that assumes responsibility for managing the other instances.

Break down a task that performs complex processing into a series of
separate elements that can be reused.

Deploy components of an application into a separate process or
container to provide isolation and encapsulation.

Deploy static content to a cloud-based storage service that can deliver
them directly to the client.

Incrementally migrate a legacy system by gradually replacing specific
pieces of functionality with new applications and services.

Messaging
The distributed nature of cloud applications requires a messaging infrastructure that connects the
components and services, ideally in a loosely coupled manner in order to maximize scalability.
Asynchronous messaging is widely used, and provides many benefits, but also brings challenges such
as the ordering of messages, poison message management, idempotency, and more.

Competing Consumers

Pipes and Filters

Priority Queue

Enable multiple concurrent consumers to process messages received on
the same messaging channel.

Break down a task that performs complex processing into a series of
separate elements that can be reused.

Prioritize requests sent to services so that requests with a higher priority
are received and processed more quickly than those with a lower
priority.

Pattern Summary

CHAPTER 5 | Design your Azure application: Design patterns

106

Queue-Based Load
Leveling

Scheduler Agent
Supervisor

Use a queue that acts as a buffer between a task and a service that it
invokes in order to smooth intermittent heavy loads.

Coordinate a set of actions across a distributed set of services and other
remote resources.

Management and Monitoring
Cloud applications run in in a remote datacenter where you do not have full control of the
infrastructure or, in some cases, the operating system. This can make management and monitoring
more difficult than an on-premises deployment. Applications must expose runtime information that
administrators and operators can use to manage and monitor the system, as well as supporting
changing business requirements and customization without requiring the application to be stopped
or redeployed.

Ambassador

Anti-Corruption Layer

External Configuration
Store

Gateway Aggregation

Gateway Offloading

Gateway Routing

Health Endpoint
Monitoring

Sidecar

Strangler

Create helper services that send network requests on behalf of a
consumer service or application.

Implement a façade or adapter layer between a modern application and
a legacy system.

Move configuration information out of the application deployment
package to a centralized location.

Use a gateway to aggregate multiple individual requests into a single
request.

Offload shared or specialized service functionality to a gateway proxy.

Route requests to multiple services using a single endpoint.

Implement functional checks in an application that external tools can
access through exposed endpoints at regular intervals.

Deploy components of an application into a separate process or
container to provide isolation and encapsulation.

Incrementally migrate a legacy system by gradually replacing specific
pieces of functionality with new applications and services.

Pattern Summary

CHAPTER 5 | Design your Azure application: Design patterns

107

Performance and Scalability
Performance is an indication of the responsiveness of a system to execute any action within a given
time interval, while scalability is ability of a system either to handle increases in load without impact
on performance or for the available resources to be readily increased. Cloud applications typically
encounter variable workloads and peaks in activity. Predicting these, especially in a multi-tenant
scenario, is almost impossible. Instead, applications should be able to scale out within limits to
meet peaks in demand, and scale in when demand decreases. Scalability concerns not just compute
instances, but other elements such as data storage, messaging infrastructure, and more.

Cache-Aside

CQRS

Event Sourcing

Index Table

Materialized View

Priority Queue

Queue-Based Load
Leveling

Sharding

Static Content Hosting

Throttling

Load data on demand into a cache from a data store

Segregate operations that read data from operations that update data
by using separate interfaces.

Use an append-only store to record the full series of events that
describe actions taken on data in a domain.

Create indexes over the fields in data stores that are frequently
referenced by queries.

Generate prepopulated views over the data in one or more data stores
when the data isn’t ideally formatted for required query operations.

Prioritize requests sent to services so that requests with a higher priority
are received and processed more quickly than those with a lower
priority.

Use a queue that acts as a buffer between a task and a service that it
invokes in order to smooth intermittent heavy loads.

Divide a data store into a set of horizontal partitions or shards.

Deploy static content to a cloud-based storage service that can deliver
them directly to the client.

Control the consumption of resources used by an instance of an
application, an individual tenant, or an entire service.

Pattern Summary

CHAPTER 5 | Design your Azure application: Design patterns

108

Resiliency
Resiliency is the ability of a system to gracefully handle and recover from failures. The nature of
cloud hosting, where applications are often multi-tenant, use shared platform services, compete for
resources and bandwidth, communicate over the Internet, and run on commodity hardware means
there is an increased likelihood that both transient and more permanent faults will arise. Detecting
failures, and recovering quickly and efficiently, is necessary to maintain resiliency.

Bulkhead

Circuit Breaker

Compensating
Transaction

Health Endpoint
Monitoring

Leader Election

Queue-Based Load
Leveling

Retry

Scheduler Agent
Supervisor

Isolate elements of an application into pools so that if one fails, the
others will continue to function.

Handle faults that might take a variable amount of time to fix when
connecting to a remote service or resource.

Undo the work performed by a series of steps, which together define an
eventually consistent operation.

Implement functional checks in an application that external tools can
access through exposed endpoints at regular intervals.

Coordinate the actions performed by a collection of collaborating task
instances in a distributed application by electing one instance as the
leader that assumes responsibility for managing the other instances.

Use a queue that acts as a buffer between a task and a service that it
invokes in order to smooth intermittent heavy loads.

Enable an application to handle anticipated, temporary failures when
it tries to connect to a service or network resource by transparently
retrying an operation that’s previously failed.

Coordinate a set of actions across a distributed set of services and other
remote resources.

Pattern Summary

CHAPTER 5 | Design your Azure application: Design patterns

109

Security
Security is the capability of a system to prevent malicious or accidental actions outside of the
designed usage, and to prevent disclosure or loss of information. Cloud applications are exposed on
the Internet outside trusted on-premises boundaries, are often open to the public, and may serve
untrusted users. Applications must be designed and deployed in a way that protects them from
malicious attacks, restricts access to only approved users, and protects sensitive data.

Federated Identity

Gatekeeper

Valet Key

Delegate authentication to an external identity provider.

Protect applications and services by using a dedicated host instance
that acts as a broker between clients and the application or service,
validates and sanitizes requests, and passes requests and data between
them.

Use a token or key that provides clients with restricted direct access to a
specific resource or service.

Pattern Summary

CHAPTER 5 | Design your Azure application: Design patterns

110

6

Catalog of patterns
Ambassador pattern

Context and problem

Solution

Create helper services that send network requests on behalf of a consumer service or application. An
ambassador service can be thought of as an out-of-process proxy that is co-located with the client.

This pattern can be useful for offloading common client connectivity tasks such as monitoring,
logging, routing, security (such as TLS), and resiliency patterns in a language agnostic way. It is often
used with legacy applications, or other applications that are difficult to modify, in order to extend
their networking capabilities. It can also enable a specialized team to implement those features.

Resilient cloud-based applications require features such as circuit breaking, routing, metering, and
monitoring, and the ability to make network-related configuration updates. It may be difficult or
impossible to update legacy applications or existing code libraries to add these features, because the
code is no longer maintained or can’t be easily modified by the development team.

Network calls may also require substantial configuration for connection, authentication, and
authorization. If these calls are used across multiple applications, built using multiple languages
and frameworks, the calls must be configured for each of these instances. In addition, network and
security functionality may need to be managed by a central team within your organization. With a
large code base, it can be risky for that team to update application code they aren’t familiar with.

Put client frameworks and libraries into an external process that acts as a proxy between your
application and external services. Deploy the proxy on the same host environment as your
application to allow control over routing, resiliency, security features, and to avoid any host-
related access restrictions. You can also use the ambassador pattern to standardize and extend
instrumentation. The proxy can monitor performance metrics such as latency or resource usage, and
this monitoring happens in the same host environment as the application.

CHAPTER 6 | Catalog of patterns

111

Features that are offloaded to the ambassador can be managed independently of the application.
You can update and modify the ambassador without disturbing the application’s legacy functionality.
It also allows for separate, specialized teams to implement and maintain security, networking, or
authentication features that have been moved to the ambassador.

Ambassador services can be deployed as a sidecar to accompany the lifecycle of a consuming
application or service. Alternatively, if an ambassador is shared by multiple separate processes on
a common host, it can be deployed as a daemon or Windows service. If the consuming service is
containerized, the ambassador should be created as a separate container on the same host, with the
appropriate links configured for communication.

Issues and considerations
The proxy adds some latency overhead. Consider whether a client library, invoked directly by the
application, is a better approach.

Consider the possible impact of including generalized features in the proxy. For example,
the ambassador could handle retries, but that might not be safe unless all operations are
idempotent.

Consider a mechanism to allow the client to pass some context to the proxy, as well as back to
the client. For example, include HTTP request headers to opt out of retry or specify the maximum
number of times to retry.

Consider how you will package and deploy the proxy.

Consider whether to use a single shared instance for all clients or an instance for each client.

•

•
•

•

•

•

•

•

•

•
•

When to use this pattern
Use this pattern when:

Need to build a common set of client connectivity features for multiple languages or frameworks.
Need to offload cross-cutting client connectivity concerns to infrastructure developers or other
more specialized teams.
Need to support cloud or cluster connectivity requirements in a legacy application or an
application that is difficult to modify.

This pattern may not be suitable:

When network request latency is critical. A proxy will introduce some overhead, although
minimal, and in some cases this may affect the application.

When client connectivity features are consumed by a single language. In that case, a better
option might be a client library that is distributed to the development teams as a package.

When connectivity features cannot be generalized and require deeper integration with the client
application.

CHAPTER 6 | Catalog of patterns

112

Example
The following diagram shows an application making a request to a remote service via an ambassador
proxy. The ambassador provides routing, circuit breaking, and logging. It calls the remote service and
then returns the response to the client application:

Anti-Corruption Layer pattern
Implement a façade or adapter layer between a modern application and a legacy system that it
depends on. This layer translates requests between the modern application and the legacy system.
Use this pattern to ensure that an application’s design is not limited by dependencies on legacy
systems.

Context and problem
Most applications rely on other systems for some data or functionality. For example, when a legacy
application is migrated to a modern system, it may still need existing legacy resources. New features
must be able to call the legacy system. This is especially true of gradual migrations, where different
features of a larger application are moved to a modern system over time.

Often these legacy systems suffer from quality issues such as convoluted data schemas or obsolete
APIs. The features and technologies used in legacy systems can vary widely from more modern
systems. To interoperate with the legacy system, the new application may need to support outdated
infrastructure, protocols, data models, APIs, or other features that you wouldn’t otherwise put into a
modern application.

Maintaining access between new and legacy systems can force the new system to adhere to at least
some of the legacy system’s APIs or other semantics. When these legacy features have quality issues,
supporting them “corrupts” what might otherwise be a cleanly designed modern application.

Solution
Isolate the legacy and modern systems by placing an anti-corruption layer between them. This
layer translates communications between the two systems, allowing the legacy system to remain
unchanged while the modern application can avoid compromising its design and technological
approach.

CHAPTER 6 | Catalog of patterns

113

Issues and considerations

Communication between the modern application and the anti-corruption layer always uses the
application’s data model and architecture. Calls from the anti-corruption layer to the legacy system
conform to that system’s data model or methods. The anti-corruption layer contains all of the logic
necessary to translate between the two systems. The layer can be implemented as a component
within the application or as an independent service.

The anti-corruption layer may add latency to calls made between the two systems.

The anti-corruption layer adds an additional service that must be managed and maintained.

Consider how your anti-corruption layer will scale.

Consider whether you need more than one anti-corruption layer. You may want to decompose
functionality into multiple services using different technologies or languages, or there may be
other reasons to partition the anti-corruption layer.

Consider how the anti-corruption layer will be managed in relation with your other applications
or services. How will it be integrated into your monitoring, release, and configuration processes?

Make sure transaction and data consistency are maintained and can be monitored.

Consider whether the anti-corruption layer needs to handle all communication between legacy
and modern systems, or just a subset of features.

Consider whether the anti-corruption layer is meant to be permanent, or eventually retired once
all legacy functionality has been migrated.

•
•

•
•

•

•
•

•

CHAPTER 6 | Catalog of patterns

114

When to use this pattern
Use this pattern when you:

A migration is planned to happen over multiple stages, but integration between new and legacy
systems needs to be maintained.
New and legacy system have different semantics, but still need to communicate.

This pattern may not be suitable if there are no significant semantic differences between new and
legacy systems.

•

•

Backends for Frontends pattern

Context and problem

Create separate backend services to be consumed by specific frontend applications or interfaces. This
pattern is useful when you want to avoid customizing a single backend for multiple interfaces.

An application may initially be targeted at a desktop web UI. Typically, a backend service is developed
in parallel that provides the features needed for that UI. As the application’s user base grows, a
mobile application is developed that must interact with the same backend. The backend service
becomes a general-purpose backend, serving the requirements of both the desktop and mobile
interfaces.

But the capabilities of a mobile device differ significantly from a desktop browser, in terms screen
size, performance, and display limitations. As a result, the requirements for a mobile application
backend differ from the desktop web UI.

These differences result in competing requirements for the backend. The backend requires regular
and significant changes to serve both the desktop web UI and the mobile application. Often,
separate interface teams work on each frontend, causing the backend to become a bottleneck in the
development process. Conflicting update requirements, and the need to keep the service working for
both frontends, can result in spending a lot of effort on a single deployable resource.

As the development activity focuses on the backend service, a separate team may be created to
manage and maintain the backend. Ultimately, this results in a disconnect between the interface
and backend development teams, placing a burden on the backend team to balance the competing
requirements of the different UI teams. When one interface team requires changes to the backend,
those changes must be validated with other interface teams before they can be integrated into the
backend.

CHAPTER 6 | Catalog of patterns

115

Solution
Create one backend per user interface. Fine tune the behavior and performance of each backend to
best match the needs of the frontend environment, without worrying about affecting other frontend
experiences.

Issues and considerations
Consider how many backends to deploy.

If different interfaces (such as mobile clients) will make the same requests, consider whether it is
necessary to implement a backend for each interface, or if a single backend will suffice.

Code duplication across services is highly likely when implementing this pattern.

Frontend-focused backend services should only contain client-specific logic and behavior.
General business logic and other global features should be managed elsewhere in your
application.

Think about how this pattern might be reflected in the responsibilities of a development team.

Consider how long it will take to implement this pattern. Will the effort of building the new
backends incur technical debt, while you continue to support the existing generic backend?

Because each backend is specific to one interface, it can be optimized for that interface. As a result,
it will be smaller, less complex, and likely faster than a generic backend that tries to satisfy the
requirements for all interfaces. Each interface team has autonomy to control their own backend and
doesn’t rely on a centralized backend development team. This gives the interface team flexibility
in language selection, release cadence, prioritization of workload, and feature integration in their
backend.

•
•

•
•

•
•

CHAPTER 6 | Catalog of patterns

116

When to use this pattern

Related guidance

Use this pattern when:

A shared or general purpose backend service must be maintained with significant development
overhead.

You want to optimize the backend for the requirements of specific client interfaces.

Customizations are made to a general-purpose backend to accommodate multiple interfaces.

An alternative language is better suited for the backend of a different user interface.

Gateway Aggregation pattern

Gateway Offloading pattern

Gateway Routing pattern

This pattern may not be suitable:
When interfaces make the same or similar requests to the backend.

When only one interface is used to interact with the backend.

•

•
•
•

•
•

•
•
•

Bulkhead pattern
Isolate elements of an application into pools so that if one fails, the others will continue to function.

This pattern is named Bulkhead because it resembles the sectioned partitions of a ship’s hull. If the
hull of a ship is compromised, only the damaged section fills with water, which prevents the ship from
sinking.

Context and problem
A cloud-based application may include multiple services, with each service having one or more
consumers. Excessive load or failure in a service will impact all consumers of the service.

Moreover, a consumer may send requests to multiple services simultaneously, using resources
for each request. When the consumer sends a request to a service that is misconfigured or not
responding, the resources used by the client’s request may not be freed in a timely manner. As
requests to the service continue, those resources may be exhausted. For example, the client’s
connection pool may be exhausted. At that point, requests by the consumer to other services are
impacted. Eventually the consumer can no longer send requests to other services, not just the
original unresponsive service.

The same issue of resource exhaustion affects services with multiple consumers. A large number of
requests originating from one client may exhaust available resources in the service. Other consumers
are no longer able to consume the service, causing a cascading failure effect.

CHAPTER 6 | Catalog of patterns

117

Solution
Partition service instances into different groups, based on consumer load and availability
requirements. This design helps to isolate failures, and allows you to sustain service functionality for
some consumers, even during a failure.

A consumer can also partition resources, to ensure that resources used to call one service don’t
affect the resources used to call another service. For example, a consumer that calls multiple services
may be assigned a connection pool for each service. If a service begins to fail, it only affects the
connection pool assigned for that service, allowing the consumer to continue using the other
services.

The benefits of this pattern include:

Isolates consumers and services from cascading failures. An issue affecting a consumer or service
can be isolated within its own bulkhead, preventing the entire solution from failing.

Allows you to preserve some functionality in the event of a service failure. Other services and
features of the application will continue to work.

Allows you to deploy services that offer a different quality of service for consuming applications.
A high-priority consumer pool can be configured to use high-priority services.

•

•

•

The following diagram shows bulkheads structured around connection pools that call individual
services. If Service A fails or causes some other issue, the connection pool is isolated, so only
workloads using the thread pool assigned to Service A are affected. Workloads that use Service B and
C are not affected and can continue working without interruption.

The next diagram shows multiple clients calling a single service. Each client is assigned a separate
service instance. Client 1 has made too many requests and overwhelmed its instance. Because each
service instance is isolated from the others, the other clients can continue making calls.

CHAPTER 6 | Catalog of patterns

118

Issues and considerations
Define partitions around the business and technical requirements of the application.

When partitioning services or consumers into bulkheads, consider the level of isolation offered
by the technology as well as the overhead in terms of cost, performance and manageability.

Consider combining bulkheads with retry, circuit breaker, and throttling patterns to provide more
sophisticated fault handling.

When partitioning consumers into bulkheads, consider using processes, thread pools, and
semaphores. Projects like Netflix Hystrix and Polly offer a framework for creating consumer
bulkheads

When partitioning services into bulkheads, consider deploying them into separate virtual
machines, containers, or processes. Containers offer a good balance of resource isolation with
fairly low overhead.

Services that communicate using asynchronous messages can be isolated through different sets
of queues. Each queue can have a dedicated set of instances processing messages on the queue,
or a single group of instances using an algorithm to dequeue and dispatch processing.

Determine the level of granularity for the bulkheads. For example, if you want to distribute
tenants across partitions, you could place each tenant into a separate partition, or several tenants
into one partition.

Monitor each partition’s performance and SLA.

When to use this pattern
Use this pattern when:

Isolate resources used to consume a set of backend services, especially if the application can
provide some level of functionality even when one of the services is not responding.
Isolate critical consumers from standard consumers.
Protect the application from cascading failures.

This pattern may not be suitable:
Less efficient use of resources may not be acceptable in the project.
The added complexity is not necessary.

•
•

•

•

•

•

•

•

•

•
•

•
•

CHAPTER 6 | Catalog of patterns

119

Example
The following Kubernetes configuration file creates an isolated container to run a single service, with
its own CPU and memory resources and limits.

apiVersion: v1
kind: Pod
metadata:
 name: drone-management
spec:
 containers:
 - name: drone-management-container
 image: drone-service
 resources:
 requests:
 memory: “64Mi”
 cpu: “250m”
 limits:
 memory: “128Mi”
 cpu: “1”

Related guidance

Circuit Breaker pattern

Designing resilient applications for Azure

Retry pattern

Throttling pattern

•
•
•
•

Cache-Aside pattern
Load data on demand into a cache from a data store. This can improve performance and also helps
to maintain consistency between data held in the cache and data in the underlying data store.

Context and problem
Applications use a cache to improve repeated access to information held in a data store. However,
it’s impractical to expect that cached data will always be completely consistent with the data in the
data store. Applications should implement a strategy that helps to ensure that the data in the cache
is as up-to-date as possible, but can also detect and handle situations that arise when the data in the
cache has become stale.

Solution
Many commercial caching systems provide read-through and write-through/write-behind operations.
In these systems, an application retrieves data by referencing the cache. If the data isn’t in the cache,
it’s retrieved from the data store and added to the cache. Any modifications to data held in the cache
are automatically written back to the data store as well.

For caches that don’t provide this functionality, it’s the responsibility of the applications that use the

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://docs.microsoft.com/en-us/azure/architecture/resiliency/index
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/throttling

120

If an application updates information, it can follow the write-through strategy by making the
modification to the data store and by invalidating the corresponding item in the cache.

When the item is next required, using the cache-aside strategy will cause the updated data to be
retrieved from the data store and added back into the cache.

cache to maintain the data.

An application can emulate the functionality of read-through caching by implementing the cache-
aside strategy. This strategy loads data into the cache on demand. The figure illustrates using the
Cache-Aside pattern to store data in the cache.

Issues and considerations
Consider the following points when deciding how to implement this pattern:

Lifetime of cached data. Many caches implement an expiration policy that invalidates data and
removes it from the cache if it’s not accessed for a specified period. For cache-aside to be effective,
ensure that the expiration policy matches the pattern of access for applications that use the data.
Don’t make the expiration period too short because this can cause applications to continually retrieve
data from the data store and add it to the cache. Similarly, don’t make the expiration period so long
that the cached data is likely to become stale. Remember that caching is most effective for relatively
static data or data that is read frequently.

Evicting data. Most caches have a limited size compared to the data store where the data originates
and they’ll evict data if necessary. Most caches adopt a least-recently-used policy for selecting items
to evict, but this might be customizable. Configure the global expiration property, other properties of
the cache, and the expiration property of each cached item to ensure that the cache is cost effective.
It isn’t always appropriate to apply a global eviction policy to every item in the cache. For example, if
a cached item is very expensive to retrieve from the data store, it can be beneficial to keep this item
in the cache at the expense of more frequently accessed but less costly items.

Priming the cache. Many solutions prepopulate the cache with the data that an application is likely

CHAPTER 6 | Catalog of patterns

121

to need as part of the startup processing. The Cache-Aside pattern can still be useful if some of this
data expires or is evicted.

Consistency. Implementing the Cache-Aside pattern doesn’t guarantee consistency between the
data store and the cache. An item in the data store can be changed at any time by an external
process and this change might not be reflected in the cache until the next time the item is loaded. In
a system that replicates data across data stores, this problem can become serious if synchronization
occurs frequently.

Local (in-memory) caching. A cache could be local to an application instance and stored in-
memory. Cache-aside can be useful in this environment if an application repeatedly accesses the
same data. However, a local cache is private and so different application instances could each have
a copy of the same cached data. This data could quickly become inconsistent between caches, so
it might be necessary to expire data held in a private cache and refresh it more frequently. In these
scenarios, consider investigating the use of a shared or a distributed caching mechanism.

When to use this pattern
Consider the following points when deciding how to implement this pattern:

Lifetime of cached data. Many caches implement an expiration policy that invalidates data and
removes it from the cache if it’s not accessed for a specified period. For cache-aside to be effective,
ensure that the expiration policy matches the pattern of access for applications that use the data.
Don’t make the expiration period too short because this can cause applications to continually retrieve
data from the data store and add it to the cache. Similarly, don’t make the expiration period so long
that the cached data is likely to become stale. Remember that caching is most effective for relatively
static data, or data that is read frequently.

Evicting data. Most caches have a limited size compared to the data store where the data originates,
and they’ll evict data if necessary. Most caches adopt a least-recently-used policy for selecting
items to evict, but this might be customizable. Configure the global expiration property and other
properties of the cache, and the expiration property of each cached item, to ensure that the cache is
cost effective. It isn’t always appropriate to apply a global eviction policy to every item in the cache.
For example, if a cached item is very expensive to retrieve from the data store, it can be beneficial to
keep this item in the cache at the expense of more frequently accessed but less costly items.

Priming the cache. Many solutions prepopulate the cache with the data that an application is likely
to need as part of the startup processing. The Cache-Aside pattern can still be useful if some of this
data expires or is evicted.

Consistency. Implementing the Cache-Aside pattern doesn’t guarantee consistency between the
data store and the cache. An item in the data store can be changed at any time by an external
process, and this change might not be reflected in the cache until the next time the item is loaded. In
a system that replicates data across data stores, this problem can become serious if synchronization
occurs frequently.

Local (in-memory) caching. A cache could be local to an application instance and stored in-
memory. Cache-aside can be useful in this environment if an application repeatedly accesses the
same data. However, a local cache is private and so different application instances could each have
a copy of the same cached data. This data could quickly become inconsistent between caches, so
it might be necessary to expire data held in a private cache and refresh it more frequently. In these
scenarios, consider investigating the use of a shared or a distributed caching mechanism.

CHAPTER 6 | Catalog of patterns

122

When to use this pattern
Use this pattern when:

A cache doesn’t provide native read-through and write-through operations.

Resource demand is unpredictable. This pattern enables applications to load data on demand. It
makes no assumptions about which data an application will require in advance.

This pattern may not be suitable:
When the cached data set is static. If the data will fit into the available cache space, prime the
cache with the data on startup and apply a policy that prevents the data from expiring.
For caching session state information in a web application hosted in a web farm. In this
environment, you should avoid introducing dependencies based on client-server affinity.

Example
In Microsoft Azure you can use Azure Redis Cache to create a distributed cache that can be shared by
multiple instances of an application.

To connect to an Azure Redis Cache instance, call the static Connect method and pass in the
connection string. The method returns a ConnectionMultiplexer that represents the connection. One
approach to sharing a ConnectionMultiplexer instance in your application is to have a static property
that returns a connected instance, similar to the following example. This approach provides a thread-
safe way to initialize only a single connected instance.

•
•

•

•

private static ConnectionMultiplexer Connection;

// Redis Connection string info
private static Lazy<ConnectionMultiplexer> lazyConnection = new Lazy<ConnectionMultiplexer>(() =>
{
 string cacheConnection = ConfigurationManager.AppSettings[“CacheConnection”].ToString();
 return ConnectionMultiplexer.Connect(cacheConnection);
});

public static ConnectionMultiplexer Connection => lazyConnection.Value;

The GetMyEntityAsync method in the following code example shows an implementation of the
Cache-Aside pattern based on Azure Redis Cache. This method retrieves an object from the cache
using the read-though approach.

An object is identified by using an integer ID as the key. The GetMyEntityAsync method tries to
retrieve an item with this key from the cache. If a matching item is found, it’s returned. If there’s no
match in the cache, the GetMyEntityAsync method retrieves the object from a data store, adds it to
the cache, and then returns it. The code that actually reads the data from the data store is not shown
here, because it depends on the data store. Note that the cached item is configured to expire to
prevent it from becoming stale if it’s updated elsewhere.

CHAPTER 6 | Catalog of patterns

123

// Set five minute expiration as a default
private const double DefaultExpirationTimeInMinutes = 5.0;

public async Task<MyEntity> GetMyEntityAsync(int id)
{
 // Define a unique key for this method and its parameters.
 var key = $”MyEntity:{id}”;
 var cache = Connection.GetDatabase();

 // Try to get the entity from the cache.
 var json = await cache.StringGetAsync(key).ConfigureAwait(false);
 var value = string.IsNullOrWhiteSpace(json)
 ? default(MyEntity)
 : JsonConvert.DeserializeObject<MyEntity>(json);

 if (value == null) // Cache miss
 {
 // If there’s a cache miss, get the entity from the original store and cache it.
 // Code has been omitted because it’s data store dependent.
 value = ...;

 // Avoid caching a null value.
 if (value != null)
 {
 // Put the item in the cache with a custom expiration time that
 // depends on how critical it is to have stale data.
 await cache.StringSetAsync(key, JsonConvert.SerializeObject(value)).ConfigureAwait(false);
 await cache.KeyExpireAsync(key, TimeSpan.FromMinutes(DefaultExpirationTimeInMinutes)).
ConfigureAwait(false);
 }
 }

 return value;
}

The examples use the Azure Redis Cache API to access the store and retrieve information from the
cache. For more information, see Using Microsoft Azure Redis Cache and How to create a Web App
with Redis Cache

The UpdateEntityAsync method shown below demonstrates how to invalidate an object in the cache
when the value is changed by the application. The code updates the original data store and then
removes the cached item from the cache.

CHAPTER 6 | Catalog of patterns

public async Task UpdateEntityAsync(MyEntity entity)
{
 // Update the object in the original data store.
 await this.store.UpdateEntityAsync(entity).ConfigureAwait(false);

 // Invalidate the current cache object.
 var cache = Connection.GetDatabase();
 var id = entity.Id;
 var key = $”MyEntity:{id}”; // The key for the cached object.
 await cache.KeyDeleteAsync(key).ConfigureAwait(false); // Delete this key from the cache.
}

Note:
The order of the steps is important. Update the data store before removing the item from the cache. If you remove the
cached item first, there is a small window of time when a client might fetch the item before the data store is updated.
That will result in a cache miss (because the item was removed from the cache), causing the earlier version of the item to
be fetched from the data store and added back into the cache. The result will be stale cache data.

124

Related guidance
The following information may be relevant when implementing this pattern:

Caching Guidance. Provides additional information on how you can cache data in a cloud
solution, and the issues that you should consider when you implement a cache.

Data Consistency Primer. Cloud applications typically use data that’s spread across data stores.
Managing and maintaining data consistency in this environment is a critical aspect of the system,
particularly the concurrency and availability issues that can arise. This primer describes issues
about consistency across distributed data, and summarizes how an application can implement
eventual consistency to maintain the availability of data.

•

•

Circuit breaker pattern
Handle faults that might take a variable amount of time to recover from when connecting to a
remote service or resource. This can improve the stability and resiliency of an application.

Context and problem
In a distributed environment, calls to remote resources and services can fail due to transient faults,
such as slow network connections, timeouts, or the resources being overcommitted or temporarily
unavailable. These faults typically correct themselves after a short period of time, and a robust cloud
application should be prepared to handle them by using a strategy such as the Retry pattern.

However, there can also be situations where faults are due to unanticipated events, and that might
take much longer to fix. These faults can range in severity from a partial loss of connectivity to the
complete failure of a service. In these situations it might be pointless for an application to continually
retry an operation that is unlikely to succeed, and instead the application should quickly accept that
the operation has failed and handle this failure accordingly.

Additionally, if a service is very busy, failure in one part of the system might lead to cascading
failures. For example, an operation that invokes a service could be configured to implement a
timeout, and reply with a failure message if the service fails to respond within this period. However,
this strategy could cause many concurrent requests to the same operation to be blocked until the
timeout period expires. These blocked requests might hold critical system resources such as memory,
threads, database connections, and so on. Consequently, these resources could become exhausted,
causing failure of other possibly unrelated parts of the system that need to use the same resources.
In these situations, it would be preferable for the operation to fail immediately, and only attempt to
invoke the service if it’s likely to succeed. Note that setting a shorter timeout might help to resolve
this problem, but the timeout shouldn’t be so short that the operation fails most of the time, even if
the request to the service would eventually succeed.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/caching
https://msdn.microsoft.com/library/dn589800.aspx

125

Solution
The Circuit Breaker pattern can prevent an application from repeatedly trying to execute an operation
that’s likely to fail. Allowing it to continue without waiting for the fault to be fixed or wasting CPU
cycles while it determines that the fault is long lasting. The Circuit Breaker pattern also enables an
application to detect whether the fault has been resolved. If the problem appears to have been fixed,
the application can try to invoke the operation.

The purpose of the Circuit Breaker pattern is different than the Retry pattern. The Retry pattern
enables an application to retry an operation in the expectation that it’ll succeed. The Circuit Breaker
pattern prevents an application from performing an operation that is likely to fail. An application
can combine these two patterns by using the Retry pattern to invoke an operation through a circuit
breaker. However, the retry logic should be sensitive to any exceptions returned by the circuit breaker
and abandon retry attempts if the circuit breaker indicates that a fault is not transient.

A circuit breaker acts as a proxy for operations that might fail. The proxy should monitor the number
of recent failures that have occurred, and use this information to decide whether to allow the
operation to proceed, or simply return an exception immediately.

The proxy can be implemented as a state machine with the following states that mimic the
functionality of an electrical circuit breaker:

Closed: The request from the application is routed to the operation. The proxy maintains a
count of the number of recent failures, and if the call to the operation is unsuccessful the proxy
increments this count. If the number of recent failures exceeds a specified threshold within
a given time period, the proxy is placed into the Open state. At this point the proxy starts a
timeout timer, and when this timer expires the proxy is placed into the Half-Open state.

The purpose of the timeout timer is to give the system time to fix the problem that
caused the failure before allowing the application to try to perform the operation again.

Open: The request from the application fails immediately and an exception is returned to the
application.

Half-Open: A limited number of requests from the application are allowed to pass through
and invoke the operation. If these requests are successful, it’s assumed that the fault that was
previously causing the failure has been fixed and the circuit breaker switches to the Closed state
(the failure counter is reset). If any request fails, the circuit breaker assumes that the fault is still
present so it reverts back to the Open state and restarts the timeout timer to give the system a
further period of time to recover from the failure.

The Half-Open state is useful to prevent a recovering service from suddenly being
flooded with requests. As a service recovers, it might be able to support a limited volume
of requests until the recovery is complete, but while recovery is in progress a flood of
work can cause the service to time out or fail again.

•

•

•

•

•

CHAPTER 6 | Catalog of patterns

126

In the figure, the failure counter used by the Closed state is time based. It’s automatically reset
at periodic intervals. This helps to prevent the circuit breaker from entering the Open state if it
experiences occasional failures. The failure threshold that trips the circuit breaker into the Open
state is only reached when a specified number of failures have occurred during a specified interval.
The counter used by the Half-Open state records the number of successful attempts to invoke the
operation. The circuit breaker reverts to the Closed state after a specified number of consecutive
operation invocations have been successful. If any invocation fails, the circuit breaker enters the
Open state immediately and the success counter will be reset the next time it enters the Half-Open
state.

How the system recovers is handled externally, possibly by restoring or restarting a 			
failed component or repairing a network connection.

The Circuit Breaker pattern provides stability while the system recovers from a failure and minimizes
the impact on performance. It can help to maintain the response time of the system by quickly
rejecting a request for an operation that’s likely to fail, rather than waiting for the operation to time
out, or never return. If the circuit breaker raises an event each time it changes state, this information
can be used to monitor the health of the part of the system protected by the circuit breaker, or to
alert an administrator when a circuit breaker trips to the Open state.

The pattern is customizable and can be adapted according to the type of the possible failure.
For example, you can apply an increasing timeout timer to a circuit breaker. You could place the
circuit breaker in the Open state for a few seconds initially, and then if the failure hasn’t been
resolved increase the timeout to a few minutes, and so on. In some cases, rather than the Open
state returning failure and raising an exception, it could be useful to return a default value that is
meaningful to the application.

CHAPTER 6 | Catalog of patterns

127

Issues and considerations
You should consider the following points when deciding how to implement this pattern:
Exception handling. An application invoking an operation through a circuit breaker must be
prepared to handle the exceptions raised if the operation is unavailable. The way exceptions are
handled will be application specific. For example, an application could temporarily degrade its
functionality, invoke an alternative operation to try to perform the same task or obtain the same data,
or report the exception to the user and ask them to try again later.

Types of exceptions. A request might fail for many reasons, some of which might indicate a more
severe type of failure than others. For example, a request might fail because a remote service has
crashed and will take several minutes to recover, or because of a timeout due to the service being
temporarily overloaded. A circuit breaker might be able to examine the types of exceptions that occur
and adjust its strategy depending on the nature of these exceptions. For example, it might require a
larger number of timeout exceptions to trip the circuit breaker to the Open state compared to the
number of failures due to the service being completely unavailable.

Logging. A circuit breaker should log all failed requests (and possibly successful requests) to enable
an administrator to monitor the health of the operation.

Recoverability. You should configure the circuit breaker to match the likely recovery pattern of the
operation it’s protecting. For example, if the circuit breaker remains in the Open state for a long
period, it could raise exceptions even if the reason for the failure has been resolved. Similarly, a circuit
breaker could fluctuate and reduce the response times of applications if it switches from the Open
state to the Half-Open state too quickly.

Testing failed operations. In the Open state, rather than using a timer to determine when to switch
to the Half-Open state, a circuit breaker can instead periodically ping the remote service or resource
to determine whether it’s become available again. This ping could take the form of an attempt to
invoke an operation that had previously failed, or it could use a special operation provided by the
remote service specifically for testing the health of the service, as described by the Health Endpoint
Monitoring pattern.

Manual override. In a system where the recovery time for a failing operation is extremely variable,
it’s beneficial to provide a manual reset option that enables an administrator to close a circuit breaker
(and reset the failure counter). Similarly, an administrator could force a circuit breaker into the Open
state (and restart the timeout timer) if the operation protected by the circuit breaker is temporarily
unavailable.

Concurrency. The same circuit breaker could be accessed by a large number of concurrent instances
of an application. The implementation shouldn’t block concurrent requests or add excessive overhead
to each call to an operation.

Resource differentiation. Be careful when using a single circuit breaker for one type of resource if
there might be multiple underlying independent providers. For example, in a data store that contains
multiple shards, one shard might be fully accessible while another is experiencing a temporary issue.
If the error responses in these scenarios are merged, an application might try to access some shards
even when failure is highly likely, while access to other shards might be blocked even though it’s
likely to succeed.

Accelerated circuit breaking. Sometimes a failure response can contain enough information for the
circuit breaker to trip immediately and stay tripped for a minimum amount of time. For example, the
error response from a shared resource that’s overloaded could indicate that an immediate retry isn’t
recommended and that the application should instead try again in a few minutes.

CHAPTER 6 | Catalog of patterns

128

Notes:
A service can return HTTP 429 (Too Many Requests) if it is throttling the client, or HTTP 503 (Service
Unavailable) if the service is not currently available. The response can include additional information,
such as the anticipated duration of the delay.

Replaying failed requests. In the Open state, rather than simply failing quickly, a circuit breaker
could also record the details of each request to a journal and arrange for these requests to be
replayed when the remote resource or service becomes available.

Inappropriate timeouts on external services. A circuit breaker might not be able to fully protect
applications from operations that fail in external services that are configured with a lengthy timeout
period. If the timeout is too long, a thread running a circuit breaker might be blocked for an
extended period before the circuit breaker indicates that the operation has failed. In this time, many
other application instances might also try to invoke the service through the circuit breaker and tie up
a significant number of threads before they all fail.

When to use this pattern

Use this pattern:
To prevent an application from trying to invoke a remote service or access a shared resource if
this operation is highly likely to fail.

This pattern isn’t recommended:
For handling access to local private resources in an application, such as in-memory data
structure. In this environment, using a circuit breaker would add overhead to your system.
As a substitute for handling exceptions in the business logic of your applications.

Example
In a web application, several of the pages are populated with data retrieved from an external service.
If the system implements minimal caching, most hits to these pages will cause a round trip to the
service. Connections from the web application to the service could be configured with a timeout
period (typically 60 seconds), and if the service doesn’t respond in this time the logic in each web
page will assume that the service is unavailable and throw an exception.

However, if the service fails and the system is very busy, users could be forced to wait for up to 60
seconds before an exception occurs. Eventually resources such as memory, connections, and threads
could be exhausted, preventing other users from connecting to the system, even if they aren’t
accessing pages that retrieve data from the service.
Scaling the system by adding further web servers and implementing load balancing might delay
when resources become exhausted, but it won’t resolve the issue because user requests will still be
unresponsive and all web servers could still eventually run out of resources.

Wrapping the logic that connects to the service and retrieves the data in a circuit breaker could help
to solve this problem and handle the service failure more elegantly. User requests will still fail, but
they’ll fail more quickly and the resources won’t be blocked.

•

•

•

CHAPTER 6 | Catalog of patterns

129

The CircuitBreaker class maintains state information about a circuit breaker in an object that
implements the ICircuitBreakerStateStore interface shown in the following code.

The State property indicates the current state of the circuit breaker, and will be either Open,
HalfOpen, or Closed as defined by the CircuitBreakerStateEnum enumeration. The IsClosed property
should be true if the circuit breaker is closed, but false if it’s open or half open. The Trip method
switches the state of the circuit breaker to the open state and records the exception that caused the
change in state, together with the date and time that the exception occurred. The LastException and
the LastStateChangedDateUtc properties return this information. The Reset method closes the circuit
breaker, and the HalfOpen method sets the circuit breaker to half open.

The InMemoryCircuitBreakerStateStore class in the example contains an implementation of the
ICircuitBreakerStateStore interface. The CircuitBreaker class creates an instance of this class to hold
the state of the circuit breaker.
The ExecuteAction method in the CircuitBreaker class wraps an operation, specified as an Action
delegate. If the circuit breaker is closed, ExecuteAction invokes the Action delegate. If the operation
fails, an exception handler calls TrackException, which sets the circuit breaker state to open. The
following code example highlights this flow.

The ExecuteAction method in the CircuitBreaker class wraps an operation, specified as an Action
delegate. If the circuit breaker is closed, ExecuteAction invokes the Action delegate. If the operation
fails, an exception handler calls TrackException, which sets the circuit breaker state to open. The
following code example highlights this flow.

interface ICircuitBreakerStateStore
{
 CircuitBreakerStateEnum State { get; }

 Exception LastException { get; }

 DateTime LastStateChangedDateUtc { get; }

 void Trip(Exception ex);

 void Reset();

 void HalfOpen();

 bool IsClosed { get; }
}

public class CircuitBreaker
{
 private readonly ICircuitBreakerStateStore stateStore =
 CircuitBreakerStateStoreFactory.GetCircuitBreakerStateStore();

 private readonly object halfOpenSyncObject = new object ();
 ...
 public bool IsClosed { get { return stateStore.IsClosed; } }

 public bool IsOpen { get { return !IsClosed; } }

 public void ExecuteAction(Action action)
 {
 ...
 if (IsOpen)
 {
 // The circuit breaker is Open.
 ... (see code sample below for details)

CHAPTER 6 | Catalog of patterns

130

 }

 // The circuit breaker is Closed, execute the action.
 try
 {
 action();
 }
 catch (Exception ex)
 {
 // If an exception still occurs here, simply
 // retrip the breaker immediately.
 this.TrackException(ex);

 // Throw the exception so that the caller can tell
 // the type of exception that was thrown.
 throw;
 }
 }

 private void TrackException(Exception ex)
 {
 // For simplicity in this example, open the circuit breaker on the first exception.
 // In reality this would be more complex. A certain type of exception, such as one
 // that indicates a service is offline, might trip the circuit breaker immediately.
 // Alternatively it might count exceptions locally or across multiple instances and
 // use this value over time, or the exception/success ratio based on the exception
 // types, to open the circuit breaker.
 this.stateStore.Trip(ex);
 }
}

The following example shows the code (omitted from the previous example) that is executed if the
circuit breaker isn’t closed. It first checks if the circuit breaker has been open for a period longer than
the time specified by the local OpenToHalfOpenWaitTime field in the CircuitBreaker class. If this is
the case, the ExecuteAction method sets the circuit breaker to half open, then tries to perform the
operation specified by the Action delegate.

If the operation is successful, the circuit breaker is reset to the closed state. If the operation fails, it
is tripped back to the open state and the time the exception occurred is updated so that the circuit
breaker will wait for a further period before trying to perform the operation again.

If the circuit breaker has only been open for a short time, less than the OpenToHalfOpenWaitTime
value, the ExecuteAction method simply throws a CircuitBreakerOpenException exception and returns
the error that caused the circuit breaker to transition to the open state.

Additionally, it uses a lock to prevent the circuit breaker from trying to perform concurrent calls to
the operation while it’s half open. A concurrent attempt to invoke the operation will be handled as if
the circuit breaker was open, and it’ll fail with an exception as described later.

CHAPTER 6 | Catalog of patterns

131

...
 if (IsOpen)
 {
 // The circuit breaker is Open. Check if the Open timeout has expired.
 // If it has, set the state to HalfOpen. Another approach might be to
 // check for the HalfOpen state that had be set by some other operation.
 if (stateStore.LastStateChangedDateUtc + OpenToHalfOpenWaitTime < DateTime.UtcNow)
 {
 // The Open timeout has expired. Allow one operation to execute. Note that, in
 // this example, the circuit breaker is set to HalfOpen after being
 // in the Open state for some period of time. An alternative would be to set
 // this using some other approach such as a timer, test method, manually, and
 // so on, and check the state here to determine how to handle execution
 // of the action.
 // Limit the number of threads to be executed when the breaker is HalfOpen.
 // An alternative would be to use a more complex approach to determine which
 // threads or how many are allowed to execute, or to execute a simple test
 // method instead.
 bool lockTaken = false;
 try
 {
 Monitor.TryEnter(halfOpenSyncObject, ref lockTaken)
 if (lockTaken)
 {
 // Set the circuit breaker state to HalfOpen.
 stateStore.HalfOpen();

 // Attempt the operation.
 action();

 // If this action succeeds, reset the state and allow other operations.
 // In reality, instead of immediately returning to the Closed state, a counter
 // here would record the number of successful operations and return the
 // circuit breaker to the Closed state only after a specified number succeed.
 this.stateStore.Reset();
 return;
 }
 catch (Exception ex)
 {
 // If there’s still an exception, trip the breaker again immediately.
 this.stateStore.Trip(ex);

 // Throw the exception so that the caller knows which exception occurred.
 throw;
 }
 finally
 {
 if (lockTaken)
 {
 Monitor.Exit(halfOpenSyncObject);
 }
 }
 }
 }
 // The Open timeout hasn’t yet expired. Throw a CircuitBreakerOpen exception to
 // inform the caller that the call was not actually attempted,
 // and return the most recent exception received.
 throw new CircuitBreakerOpenException(stateStore.LastException);
 }
 ...

CHAPTER 6 | Catalog of patterns

132

To use a CircuitBreaker object to protect an operation, an application creates an instance of the
CircuitBreaker class and invokes the ExecuteAction method, specifying the operation to be performed
as the parameter. The application should be prepared to catch the CircuitBreakerOpenException
exception if the operation fails because the circuit breaker is open. The following code shows an
example:

Related patterns and guidance

The following patterns might also be useful when implementing this pattern:
Retry Pattern. Describes how an application can handle anticipated temporary failures when it
tries to connect to a service or network resource by transparently retrying an operation that has
previously failed.

Health Endpoint Monitoring Pattern. A circuit breaker might be able to test the health of a
service by sending a request to an endpoint exposed by the service. The service should return
information indicating its status.

var breaker = new CircuitBreaker();

try
{
 breaker.ExecuteAction(() =>
 {
 // Operation protected by the circuit breaker.
 ...
 });
}
catch (CircuitBreakerOpenException ex)
{
 // Perform some different action when the breaker is open.
 // Last exception details are in the inner exception.
 ...
}
catch (Exception ex)
{
 ...
}

Command and Query Responsibility Segregation
(CQRS) pattern
Segregate operations that read data from operations that update data by using separate interfaces.
This can maximize performance, scalability, and security, supports the evolution of the system over
time through higher flexibility, and prevent update commands from causing merge conflicts at the
domain level.

Context and problem
In traditional data management systems, both commands (updates to the data) and queries (requests
for data) are executed against the same set of entities in a single data repository. These entities can
be a subset of the rows in one or more tables in a relational database such as SQL Server.

•

•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/health-endpoint-monitoring

133

Typically in these systems all create, read, update, and delete (CRUD) operations are applied to the
same representation of the entity. For example, a data transfer object (DTO) representing a customer
is retrieved from the data store by the data access layer (DAL) and displayed on the screen. A user
updates some fields of the DTO (perhaps through data binding) and the DTO is then saved back in
the data store by the DAL. The same DTO is used for both the read and write operations. The figure
illustrates a traditional CRUD architecture.

Traditional CRUD designs work well when only limited business logic is applied to the data
operations. Scaffold mechanisms provided by development tools can create data access code very
quickly, which can then be customized as required.

However, the traditional CRUD approach has some disadvantages:
It often means that there’s a mismatch between the read and write representations of the data,
such as additional columns or properties that must be updated correctly even though they aren’t
required as part of an operation.
It risks data contention when records are locked in the data store in a collaborative domain,
where multiple actors operate in parallel on the same set of data. Or update conflicts caused
by concurrent updates when optimistic locking is used. These risks increase as the complexity
and throughput of the system grows. In addition, the traditional approach can have a negative
effect on performance due to load on the data store and data access layer, and the complexity of
queries required to retrieve information.
It can make managing security and permissions more complex because each entity is subject to
both read and write operations, which might expose data in the wrong context.

For a deeper understanding of the limits of the CRUD approach see CRUD, Only When You Can
Afford It.

Solution
Command and Query Responsibility Segregation (CQRS) is a pattern that segregates the operations
that read data (queries) from the operations that update data (commands) by using separate
interfaces. This means that the data models used for querying and updates are different. The models
can then be isolated, as shown in the following figure, although that’s not an absolute requirement.

•

•

•

CHAPTER 6 | Catalog of patterns

https://blogs.msdn.microsoft.com/maarten_mullender/2004/07/23/crud-only-when-you-can-afford-it-revisited/
https://blogs.msdn.microsoft.com/maarten_mullender/2004/07/23/crud-only-when-you-can-afford-it-revisited/

134

Compared to the single data model used in CRUD-based systems, the use of separate query and
update models for the data in CQRS-based systems simplifies design and implementation. However,
one disadvantage is that unlike CRUD designs, CQRS code can’t automatically be generated using
scaffold mechanisms.

The query model for reading data and the update model for writing data can access the same
physical store, perhaps by using SQL views or by generating projections on the fly. However, it’s
common to separate the data into different physical stores to maximize performance, scalability, and
security, as shown in the next figure.

The read store can be a read-only replica of the write store, or the read and write stores can have a
different structure altogether. Using multiple read-only replicas of the read store can greatly increase
query performance and application UI responsiveness, especially in distributed scenarios where
read-only replicas are located close to the application instances. Some database systems (SQL Server)
provide additional features such as failover replicas to maximize availability.

Separation of the read and write stores also allows each to be scaled appropriately to match the load.
For example, read stores typically encounter a much higher load than write stores.

When the query/read model contains denormalized data (see Materialized View pattern),
performance is maximized when reading data for each of the views in an application or when
querying the data in the system.

CHAPTER 6 | Catalog of patterns

135

Issues and considerations

When to use this pattern

Consider the following points when deciding how to implement this pattern:
Dividing the data store into separate physical stores for read and write operations can increase
the performance and security of a system, but it can add complexity in terms of resiliency and
eventual consistency. The read model store must be updated to reflect changes to the write
model store, and it can be difficult to detect when a user has issued a request based on stale
read data, which means that the operation can’t be completed.

For a description of eventual consistency see the Data Consistency Primer.

Consider applying CQRS to limited sections of your system where it will be most valuable.

A typical approach to deploying eventual consistency is to use event sourcing in conjunction
with CQRS so that the write model is an append-only stream of events driven by execution of
commands. These events are used to update materialized views that act as the read model. For
more information see Event Sourcing and CQRS.

Use this pattern in the following situations:
Collaborative domains where multiple operations are performed in parallel on the same data.
CQRS allows you to define commands with enough granularity to minimize merge conflicts at the
domain level (any conflicts that do arise can be merged by the command), even when updating
what appears to be the same type of data.

Task-based user interfaces where users are guided through a complex process as a series of
steps or with complex domain models. Also, useful for teams already familiar with domain-driven
design (DDD) techniques. The write model has a full command-processing stack with business
logic, input validation, and business validation to ensure that everything is always consistent for
each of the aggregates (each cluster of associated objects treated as a unit for data changes) in
the write model. The read model has no business logic or validation stack and just returns a DTO
for use in a view model. The read model is eventually consistent with the write model.

Scenarios where performance of data reads must be fine tuned separately from performance
of data writes, especially when the read/write ratio is very high, and when horizontal scaling is
required. For example, in many systems the number of read operations is many times greater
that the number of write operations. To accommodate this, consider scaling out the read model,
but running the write model on only one or a few instances. A small number of write model
instances also helps to minimize the occurrence of merge conflicts.
Scenarios where one team of developers can focus on the complex domain model that is part of
the write model, and another team can focus on the read model and the user interfaces.
Scenarios where the system is expected to evolve over time and might contain multiple versions
of the model, or where business rules change regularly.
Integration with other systems, especially in combination with event sourcing, where the
temporal failure of one subsystem shouldn’t affect the availability of the others.

This pattern isn’t recommended in the following situations:
Where the domain or the business rules are simple.
Where a simple CRUD-style user interface and the related data access operations are sufficient.
For implementation across the whole system. There are specific components of an overall data

•

•
•
•

•

•

•

•

•

•

•
•
•

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/dn589800.aspx
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs#EventSourcingandCQRS

136

management scenario where CQRS can be useful, but it can add considerable and unnecessary
complexity when it isn’t required.

Event Sourcing and CQRS
The CQRS pattern is often used along with the Event Sourcing pattern. CQRS-based systems use
separate read and write data models, each tailored to relevant tasks and often located in physically
separate stores. When used with the Event Sourcing pattern, the store of events is the write
model, and is the official source of information. The read model of a CQRS-based system provides
materialized views of the data, typically as highly denormalized views. These views are tailored to the
interfaces and display requirements of the application, which helps to maximize both display and
query performance.

Using the stream of events as the write store rather than the actual data at a point in time avoids
update conflicts on a single aggregate and maximizes performance and scalability. The events can be
used to asynchronously generate materialized views of the data that are used to populate the read
store.

Because the event store is the official source of information, it is possible to delete the materialized
views and replay all past events to create a new representation of the current state when the system
evolves, or when the read model must change. The materialized views are in effect a durable read-
only cache of the data.

When using CQRS combined with the Event Sourcing pattern, consider the following:
As with any system where the write and read stores are separate, systems based on this pattern
are only eventually consistent. There will be some delay between the event being generated and
the data store being updated.
The pattern adds complexity because code must be created to initiate and handle events and
assemble or update the appropriate views or objects required by queries or a read model.
The complexity of the CQRS pattern when used with the Event Sourcing pattern can make a
successful implementation more difficult and requires a different approach to designing systems.
However, event sourcing can make it easier to model the domain and makes it easier to rebuild
views or create new ones because the intent of the changes in the data is preserved.
Generating materialized views for use in the read model or projections of the data by replaying
and handling the events for specific entities or collections of entities can require significant
processing time and resource usage. This is especially true if it requires summation or analysis of
values over long periods, because all the associated events might need to be examined. Resolve
this by implementing snapshots of the data at scheduled intervals, such as a total count of the
number of a specific action that have occurred or the current state of an entity.

•

•

•

Example
The following code shows some extracts from an example of a CQRS implementation that uses
different definitions for the read and the write models. The model interfaces don’t dictate any
features of the underlying data stores. They can evolve and be fine-tuned independently because
these interfaces are separated. The following code shows the read model definition.

CHAPTER 6 | Catalog of patterns

137

// Query interface
namespace ReadModel
{
 public interface ProductsDao
 {
 ProductDisplay FindById(int productId);
 ICollection<ProductDisplay> FindByName(string name);
 ICollection<ProductInventory> FindOutOfStockProducts();
 ICollection<ProductDisplay> FindRelatedProducts(int productId);
 }

 public class ProductDisplay
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal UnitPrice { get; set; }
 public bool IsOutOfStock { get; set; }
 public double UserRating { get; set; }
 }

 public class ProductInventory
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public int CurrentStock { get; set; }
 }
}

public interface ICommand
{
 Guid Id { get; }
}

public class RateProduct : ICommand
{
 public RateProduct()
 {
 this.Id = Guid.NewGuid();
 }
 public Guid Id { get; set; }
 public int ProductId { get; set; }
 public int Rating { get; set; }
 public int UserId {get; set; }
}

The system allows users to rate products. The application code does this using the RateProduct
command shown in the following code.

The system uses the ProductsCommandHandler class to handle commands sent by the
application. Clients typically send commands to the domain through a messaging system such as
a queue. The command handler accepts these commands and invokes methods of the domain
interface. The granularity of each command is designed to reduce the chance of conflicting requests.
The following code shows an outline of the ProductsCommandHandler class.

CHAPTER 6 | Catalog of patterns

138

public class ProductsCommandHandler :
 ICommandHandler<AddNewProduct>,
 ICommandHandler<RateProduct>,
 ICommandHandler<AddToInventory>,
 ICommandHandler<ConfirmItemShipped>,
 ICommandHandler<UpdateStockFromInventoryRecount>
{
 private readonly IRepository<Product> repository;

 public ProductsCommandHandler (IRepository<Product> repository)
 {
 this.repository = repository;
 }

 void Handle (AddNewProduct command)
 {
 ...
 }

 void Handle (RateProduct command)
 {
 var product = repository.Find(command.ProductId);
 if (product != null)
 {
 product.RateProduct(command.UserId, command.Rating);
 repository.Save(product);
 }
 }

 void Handle (AddToInventory command)
 {
 ...
 }

 void Handle (ConfirmItemsShipped command)
 {
 ...
 }

 void Handle (UpdateStockFromInventoryRecount command)
 {
 ...
 }
}

The following code shows the IProductsDomain interface from the write model.

public interface IProductsDomain
{
 void AddNewProduct(int id, string name, string description, decimal price);
 void RateProduct(int userId, int rating);
 void AddToInventory(int productId, int quantity);
 void ConfirmItemsShipped(int productId, int quantity);
 void UpdateStockFromInventoryRecount(int productId, int updatedQuantity);
}

CHAPTER 6 | Catalog of patterns

139

Also notice how the IProductsDomain interface contains methods that have a meaning in the
domain. Typically, in a CRUD environment these methods would have generic names such as Save
or Update, and have a DTO as the only argument. The CQRS approach can be designed to meet the
needs of this organization’s business and inventory management systems.

Related patterns and guidance
The following patterns and guidance are useful when implementing this pattern:

For a comparison of CQRS with other architectural styles, see Architecture styles and CQRS
architecture style.

Data Consistency Primer. Explains the issues that are typically encountered due to eventual
consistency between the read and write data stores when using the CQRS pattern, and how these
issues can be resolved.

Data Partitioning Guidance. Describes how the read and write data stores used in the CQRS
pattern can be divided into partitions that can be managed and accessed separately to improve
scalability, reduce contention, and optimize performance.
Event Sourcing Pattern. Describes in more detail how Event Sourcing can be used with the CQRS
pattern to simplify tasks in complex domains while improving performance, scalability, and
responsiveness. As well as how to provide consistency for transactional data while maintaining
full audit trails and history that can enable compensating actions.
Materialized View Pattern. The read model of a CQRS implementation can contain materialized
views of the write model data, or the read model can be used to generate materialized views.
The patterns & practices guide CQRS Journey. In particular, Introducing the Command Query
Responsibility Segregation Pattern explores the pattern and when it’s useful, and Epilogue:
Lessons Learned helps you understand some of the issues that come up when using this pattern.
The post CQRS by Martin Fowler, which explains the basics of the pattern and links to other
useful resources.
Greg Young’s posts, which explore many aspects of the CQRS pattern.

•

•

•

•

•

•

•

•

Compensating Transaction pattern
Undo the work performed by a series of steps, which together define an eventually consistent
operation, if one or more of the steps fail. Operations that follow the eventual consistency model
are commonly found in cloud-hosted applications that implement complex business processes and
workflows.

Context and problem
Applications running in the cloud frequently modify data. This data might be spread across various
data sources held in different geographic locations. To avoid contention and improve performance in
a distributed environment, an application shouldn’t try to provide strong transactional consistency.
Rather, the application should implement eventual consistency. In this model, a typical business
operation consists of a series of separate steps. While these steps are being performed, the overall
view of the system state might be inconsistent, but when the operation has completed and all of the
steps have been executed the system should become consistent again. The Data Consistency Primer
provides information about why distributed transactions don’t scale well, and the principles of the
eventual consistency model.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/cqrs
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/cqrs
https://msdn.microsoft.com/library/dn589800.aspx
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view
https://msdn.microsoft.com/en-us/library/jj554200.aspx
https://msdn.microsoft.com/library/jj591573.aspx
https://msdn.microsoft.com/library/jj591573.aspx
https://msdn.microsoft.com/library/jj591568.aspx
https://msdn.microsoft.com/library/jj591568.aspx
https://martinfowler.com/bliki/CQRS.html
http://codebetter.com/gregyoung/
https://msdn.microsoft.com/library/dn589800.aspx

140

A challenge in the eventual consistency model is how to handle a step that has failed. In this case
it might be necessary to undo all of the work completed by the previous steps in the operation.
However, the data can’t simply be rolled back because other concurrent instances of the application
might have changed it. Even in cases where the data hasn’t been changed by a concurrent instance,
undoing a step might not simply be a matter of restoring the original state. It might be necessary to
apply various business-specific rules (see the travel website described in the Example section).

If an operation that implements eventual consistency spans several heterogeneous data stores,
undoing the steps in the operation will require visiting each data store in turn. The work performed in
every data store must be undone reliably to prevent the system from remaining inconsistent.

Not all data affected by an operation that implements eventual consistency might be held in a
database. In a service oriented architecture (SOA) environment an operation could invoke an action
in a service and cause a change in the state held by that service. To undo the operation, this state
change must also be undone. This can involve invoking the service again and performing another
action that reverses the effects of the first.

Solution
The solution is to implement a compensating transaction. The steps in a compensating transaction
must undo the effects of the steps in the original operation. A compensating transaction might
not be able to simply replace the current state with the state the system was in at the start of the
operation because this approach could overwrite changes made by other concurrent instances of
an application. Instead, it must be an intelligent process that takes into account any work done by
concurrent instances. This process will usually be application specific, driven by the nature of the
work performed by the original operation.

A common approach is to use a workflow to implement an eventually consistent operation that
requires compensation. As the original operation proceeds, the system records information about
each step and how the work performed by that step can be undone. If the operation fails at any
point, the workflow rewinds back through the steps it’s completed and performs the work that
reverses each step. Note that a compensating transaction might not have to undo the work in the
exact reverse order of the original operation, and it might be possible to perform some of the undo
steps in parallel.
	
This approach is similar to the Sagas strategy discussed in Clemens Vasters’ blog.

A compensating transaction is also an eventually consistent operation and it could also fail. The
system should be able to resume the compensating transaction at the point of failure and continue.
It might be necessary to repeat a step that’s failed so the steps in a compensating transaction should
be defined as idempotent commands. For more information, see Idempotency Patterns on Jonathan
Oliver’s blog.

In some cases it might not be possible to recover from a step that has failed except through manual
intervention. In these situations the system should raise an alert and provide as much information as
possible about the reason for the failure.

CHAPTER 6 | Catalog of patterns

http://vasters.com/archive/Sagas.html

141

Issues and considerations
Consider the following points when deciding how to implement this pattern:
It might not be easy to determine when a step in an operation that implements eventual consistency
has failed. A step might not fail immediately, but instead could block. It might be necessary to
implement some form of time-out mechanism.

Compensation logic isn’t easily generalized. A compensating transaction is application specific. It
relies on the application having sufficient information to be able to undo the effects of each step in a
failed operation.

You should define the steps in a compensating transaction as idempotent commands. This enables
the steps to be repeated if the compensating transaction itself fails.

The infrastructure that handles the steps in the original operation, and the compensating transaction,
must be resilient. It must not lose the information required to compensate for a failing step, and it
must be able to reliably monitor the progress of the compensation logic.

A compensating transaction doesn’t necessarily return the data in the system to the state it was in at
the start of the original operation. Instead, it compensates for the work performed by the steps that
completed successfully before the operation failed.

The order of the steps in the compensating transaction doesn’t necessarily have to be the exact
opposite of the steps in the original operation. For example, one data store might be more sensitive
to inconsistencies than another, and so the steps in the compensating transaction that undo the
changes to this store should occur first.

Placing a short-term timeout-based lock on each resource that’s required to complete an operation,
and obtaining these resources in advance can help increase the likelihood that the overall activity will
succeed. The work should be performed only after all the resources have been acquired. All actions
must be finalized before the locks expire.

Consider using retry logic that is more forgiving than usual to minimize failures that trigger a
compensating transaction. If a step in an operation that implements eventual consistency fails, try
handling the failure as a transient exception and repeat the step. Only stop the operation and initiate
a compensating transaction if a step fails repeatedly or irrecoverably.

Many of the challenges of implementing a compensating transaction are the same as those with
implementing eventual consistency. See the section Considerations for Implementing Eventual
Consistency in the Data Consistency Primer for more information.

When to use this pattern
Use this pattern only for operations that must be undone if they fail. If possible, design solutions to
avoid the complexity of requiring compensating transactions.

CHAPTER 6 | Catalog of patterns

142

Example
A travel website lets customers book itineraries. A single itinerary might comprise a series of flights
and hotels. A customer traveling from Seattle to London and then on to Paris could perform the
following steps when creating an itinerary:

Book a seat on flight F1 from Seattle to London.

Book a seat on flight F2 from London to Paris.

Book a seat on flight F3 from Paris to Seattle.

Reserve a room at hotel H1 in London.

Reserve a room at hotel H2 in Paris.

These steps constitute an eventually consistent operation, although each step is a separate action.
Therefore, as well as performing these steps, the system must also record the counter operations
necessary to undo each step in case the customer decides to cancel the itinerary. The steps necessary
to perform the counter operations can then run as a compensating transaction.

1.

2.

3.

4.

5.

Notice that the steps in the compensating transaction might not be the exact opposite of the
original steps and the logic in each step in the compensating transaction must take into account any
business-specific rules. For example, unbooking a seat on a flight might not entitle the customer to a
complete refund of any money paid. The figure illustrates generating a compensating transaction to
undo a long-running transaction to book a travel itinerary.

In many business solutions, failure of a single step doesn’t always necessitate rolling the system back
by using a compensating transaction. For example, if—after having booked flights F1, F2, and F3 in
the travel website scenario—the customer is unable to reserve a room at hotel H1, it’s preferable to
offer the customer a room at a different hotel in the same city rather than canceling the flights. The
customer can still decide to cancel (in which case the compensating transaction runs and undoes the
bookings made on flights F1, F2, and F3), but this decision should be made by the customer rather
than by the system.

It might be possible for the steps in the compensating transaction to be performed in parallel,
depending on how you’ve designed the compensating logic for each step.

CHAPTER 6 | Catalog of patterns

143

Related patterns and guidance
The following patterns and guidance might also be relevant when implementing this pattern:

Data Consistency Primer. The Compensating Transaction pattern is often used to undo operations
that implement the eventual consistency model. This primer provides information on the benefits
and tradeoffs of eventual consistency.
Scheduler-Agent-Supervisor Pattern. Describes how to implement resilient systems that perform
business operations that use distributed services and resources. Sometimes, it might be
necessary to undo the work performed by an operation by using a compensating transaction.
Retry Pattern. Compensating transactions can be expensive to perform and it might be possible
to minimize their use by implementing an effective policy of retrying failing operations by
following the Retry pattern.

Competing Consumers pattern
Enable multiple concurrent consumers to process messages received on the same messaging
channel. This enables a system to process multiple messages concurrently to optimize throughput, to
improve scalability and availability, and to balance the workload.

Context and problem
An application running in the cloud is expected to handle a large number of requests. Rather than
process each request synchronously, a common technique is for the application to pass them through
a messaging system to another service (a consumer service) that handles them asynchronously. This
strategy helps to ensure that the business logic in the application isn’t blocked while the requests are
being processed.

The number of requests can vary significantly over time for many reasons. A sudden increase in user
activity or aggregated requests coming from multiple tenants can cause an unpredictable workload.
At peak hours a system might need to process many hundreds of requests per second, while at other
times the number could be very small. Additionally, the nature of the work performed to handle
these requests might be highly variable. Using a single instance of the consumer service can cause
that instance to become flooded with requests, or the messaging system might be overloaded by an
influx of messages coming from the application. To handle this fluctuating workload, the system can
run multiple instances of the consumer service. However, these consumers must be coordinated to
ensure that each message is only delivered to a single consumer. The workload also needs to be load
balanced across consumers to prevent an instance from becoming a bottleneck.

•

•

•

Solution
Use a message queue to implement the communication channel between the application and the
instances of the consumer service. The application posts requests in the form of messages to the
queue, and the consumer service instances receive messages from the queue and process them.
This approach enables the same pool of consumer service instances to handle messages from
any instance of the application. The figure illustrates using a message queue to distribute work to
instances of a service.

CHAPTER 6 | Catalog of patterns

144

This solution has the following benefits:
It provides a load-leveled system that can handle wide variations in the volume of requests
sent by application instances. The queue acts as a buffer between the application instances
and the consumer service instances. This can help to minimize the impact on availability and
responsiveness for both the application and the service instances, as described by the Queue-
based Load Leveling pattern. Handling a message that requires some long-running processing
doesn’t prevent other messages from being handled concurrently by other instances of the
consumer service.
It improves reliability. If a producer communicates directly with a consumer instead of using
this pattern, but doesn’t monitor the consumer, there’s a high probability that messages could
be lost or fail to be processed if the consumer fails. In this pattern, messages aren’t sent to a
specific service instance. A failed service instance won’t block a producer, and messages can be
processed by any working service instance.
It doesn’t require complex coordination between the consumers, or between the producer and
the consumer instances. The message queue ensures that each message is delivered at least
once.
It’s scalable. The system can dynamically increase or decrease the number of instances of the
consumer service as the volume of messages fluctuates.
It can improve resiliency if the message queue provides transactional read operations. If a
consumer service instance reads and processes the message as part of a transactional operation,
and the consumer service instance fails, this pattern can ensure that the message will be returned
to the queue to be picked up and handled by another instance of the consumer service.

•

•

•

•

•

•

Issues and considerations
Consider the following points when deciding how to implement this pattern:

Message ordering. The order in which consumer service instances receive messages isn’t
guaranteed and doesn’t necessarily reflect the order in which the messages were created. Design
the system to ensure that message processing is idempotent because this will help to eliminate
any dependency on the order in which messages are handled. For more information, see
Idempotency Patterns on Jonathon Oliver’s blog.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling

145

Designing services for resiliency. If the system is designed to detect and restart failed service
instances, it might be necessary to implement the processing performed by the service instances
as idempotent operations to minimize the effects of a single message being retrieved and
processed more than once.

Detecting poison messages. A malformed message, or a task that requires access to resources
that aren’t available, can cause a service instance to fail. The system should prevent such
messages being returned to the queue, and instead capture and store the details of these
messages elsewhere so that they can be analyzed if necessary.
Handling results. The service instance handling a message is fully decoupled from the
application logic that generates the message, and they might not be able to communicate
directly. If the service instance generates results that must be passed back to the application
logic, this information must be stored in a location that’s accessible to both. In order to prevent
the application logic from retrieving incomplete data the system must indicate when processing
is complete.

If you’re using Azure, a worker process can pass results back to the application logic by using a
dedicated message reply queue. The application logic must be able to correlate these results with
the original message. This scenario is described in more detail in the Asynchronous Messaging
Primer.

Scaling the messaging system. In a large-scale solution, a single message queue could be
overwhelmed by the number of messages and become a bottleneck in the system. In this
situation, consider partitioning the messaging system to send messages from specific producers
to a particular queue, or use load balancing to distribute messages across multiple message
queues.

Ensuring reliability of the messaging system. A reliable messaging system is needed to
guarantee that after the application enqueues a message it won’t be lost. This is essential for
ensuring that all messages are delivered at least once.

Microsoft Azure Service Bus Queues can implement guaranteed first-in-first-out ordering of
messages by using message sessions. For more information, see Messaging Patterns Using Sessions.

•

•

•

•

•
•
•
•

•

•

•

•

When to use this pattern

Use this pattern when:
The workload for an application is divided into tasks that can run asynchronously.

Tasks are independent and can run in parallel.
The volume of work is highly variable, requiring a scalable solution.
The solution must provide high availability and must be resilient if the processing for a task fails.

This pattern might not be useful when:
It’s not easy to separate the application workload into discrete tasks, or there’s a high degree of
dependence between tasks.
Tasks must be performed synchronously, and the application logic must wait for a task to
complete before continuing.
Tasks must be performed in a specific sequence.

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/dn589781.aspx
https://msdn.microsoft.com/library/dn589781.aspx

146

Some messaging systems support sessions that enable a producer to group messages together and
ensure that they’re all handled by the same consumer. This mechanism can be used with prioritized
messages (if they are supported) to implement a form of message ordering that delivers messages in
sequence from a producer to a single consumer.

Example
Azure provides storage queues and Service Bus queues that can act as a mechanism for
implementing this pattern. The application logic can post messages to a queue, and consumers
implemented as tasks in one or more roles can retrieve messages from this queue and process them.
For resiliency, a Service Bus queue enables a consumer to use PeekLock mode when it retrieves a
message from the queue. This mode doesn’t actually remove the message, but simply hides it from
other consumers. The original consumer can delete the message when it’s finished processing it. If
the consumer fails, the peek lock will time out and the message will become visible again allowing
another consumer to retrieve it.

For detailed information on using Azure Service Bus queues, see Service Bus queues, topics, and
subscriptions. For information on using Azure storage queues, see Get started with Azure Queue
storage using .NET.

The following code from the QueueManager class in CompetingConsumers solution available on
GitHub shows how you can create a queue by using a QueueClient instance in the Start event handler
in a web or worker role.

private string queueName = ...;
private string connectionString = ...;
...

public async Task Start()
{
 // Check if the queue already exists.
 var manager = NamespaceManager.CreateFromConnectionString(this.connectionString);
 if (!manager.QueueExists(this.queueName))
 {
 var queueDescription = new QueueDescription(this.queueName);

 // Set the maximum delivery count for messages in the queue. A message
 // is automatically dead-lettered after this number of deliveries. The
 // default value for dead letter count is 10.
 queueDescription.MaxDeliveryCount = 3;

 await manager.CreateQueueAsync(queueDescription);
 }
 ...

 // Create the queue client. By default the PeekLock method is used.
 this.client = QueueClient.CreateFromConnectionString(
 this.connectionString, this.queueName);
}

The next code snippet shows how an application can create and send a batch of messages to the
queue.

CHAPTER 6 | Catalog of patterns

147

public async Task SendMessagesAsync()
{
 // Simulate sending a batch of messages to the queue.
 var messages = new List<BrokeredMessage>();

 for (int i = 0; i < 10; i++)
 {
 var message = new BrokeredMessage() { MessageId = Guid.NewGuid().ToString() };
 messages.Add(message);
 }
 await this.client.SendBatchAsync(messages);
}

private ManualResetEvent pauseProcessingEvent;
...

public void ReceiveMessages(Func<BrokeredMessage, Task> processMessageTask)
{
 // Set up the options for the message pump.
 var options = new OnMessageOptions();

 // When AutoComplete is disabled it’s necessary to manually
 // complete or abandon the messages and handle any errors.
 options.AutoComplete = false;
 options.MaxConcurrentCalls = 10;
 options.ExceptionReceived += this.OptionsOnExceptionReceived;

 // Use of the Service Bus OnMessage message pump.
 // The OnMessage method must be called once, otherwise an exception will occur.
 this.client.OnMessageAsync(
 async (msg) =>
 {
 // Will block the current thread if Stop is called.
 this.pauseProcessingEvent.WaitOne();

 // Execute processing task here.
 await processMessageTask(msg);
 },
 options);
}
...

private void OptionsOnExceptionReceived(object sender,
 ExceptionReceivedEventArgs exceptionReceivedEventArgs)
{
 ...
}

The following code shows how a consumer service instance can receive messages from the queue
by following an event-driven approach. The processMessageTask parameter to the ReceiveMessages
method is a delegate that references the code to run when a message is received. This code is run
asynchronously.

CHAPTER 6 | Catalog of patterns

148

Note that autoscaling features, such as those available in Azure, can be used to start and stop role
instances as the queue length fluctuates. For more information, see Autoscaling Guidance. Also,
it’s not necessary to maintain a one-to-one correspondence between role instances and worker
processes—a single role instance can implement multiple worker processes. For more information,
see Compute Resource Consolidation pattern.

Related patterns and guidance
The following patterns and guidance might be relevant when implementing this pattern:

Asynchronous Messaging Primer. Message queues are an asynchronous communications
mechanism. If a consumer service needs to send a reply to an application, it might be necessary
to implement some form of response messaging. The Asynchronous Messaging Primer provides
information on how to implement request/reply messaging using message queues.
Autoscaling Guidance. It might be possible to start and stop instances of a consumer service
since the length of the queue applications post messages on varies. Autoscaling can help to
maintain throughput during times of peak processing.
Compute Resource Consolidation Pattern. It might be possible to consolidate multiple instances
of a consumer service into a single process to reduce costs and management overhead. The
Compute Resource Consolidation pattern describes the benefits and tradeoffs of following this
approach.
Queue-based Load Leveling Pattern. Introducing a message queue can add resiliency to the
system, enabling service instances to handle widely varying volumes of requests from application
instances. The message queue acts as a buffer, which levels the load. The Queue-based Load
Leveling pattern describes this scenario in more detail.
This pattern has a sample application associated with it.

•

•

•

•

Compute Resource Consolidation pattern
Consolidate multiple tasks or operations into a single computational unit. This can increase compute
resource utilization and reduce the costs and management overhead associated with performing
compute processing in cloud-hosted applications.

Context and problem
A cloud application often implements a variety of operations. In some solutions it makes sense
to follow the design principle of separation of concerns initially and divide these operations into
separate computational units that are hosted and deployed individually (for example, as separate
App Service web apps, separate Virtual Machines, or separate Cloud Service roles). However,
although this strategy can help simplify the logical design of the solution, deploying a large number
of computational units as part of the same application can increase runtime hosting costs and make
management of the system more complex.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/patterns/compute-resource-consolidation
https://msdn.microsoft.com/library/dn589781.aspx
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/patterns/compute-resource-consolidation
https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://github.com/mspnp/cloud-design-patterns/tree/master/competing-consumers

149

As an example, the figure shows the simplified structure of a cloud-hosted solution that is
implemented using more than one computational unit. Each computational unit runs in its own
virtual environment. Each function has been implemented as a separate task (labeled Task A through
Task E) running in its own computational unit.

Each computational unit consumes chargeable resources, even when it’s idle or lightly used.
Therefore, this isn’t always the most cost-effective solution.

In Azure, this concern applies to roles in a Cloud Service, App Services, and Virtual Machines. These
items run in their own virtual environment. Running a collection of separate roles, websites, or
virtual machines that are designed to perform a set of well-defined operations, but that need to
communicate and cooperate as part of a single solution, can be an inefficient use of resources.

To help reduce costs, increase utilization, improve communication speed, and reduce management
it’s possible to consolidate multiple tasks or operations into a single computational unit.

Tasks can be grouped according to criteria based on the features provided by the environment and
the costs associated with these features. A common approach is to look for tasks that have a similar
profile concerning their scalability, lifetime, and processing requirements. Grouping these together
allows them to scale as a unit. The elasticity provided by many cloud environments enables additional
instances of a computational unit to be started and stopped according to the workload. For example,
Azure provides autoscaling that you can apply to roles in a Cloud Service, App Services, and Virtual
Machines. For more information, see Autoscaling Guidance.

As a counter example to show how scalability can be used to determine which operations shouldn’t
be grouped together, consider the following two tasks:

Task 1 polls for infrequent, time-insensitive messages sent to a queue.
Task 2 handles high-volume bursts of network traffic.

The second task requires elasticity that can involve starting and stopping a large number of instances
of the computational unit. Applying the same scaling to the first task would simply result in more
tasks listening for infrequent messages on the same queue and is a waste of resources.

In many cloud environments it’s possible to specify the resources available to a computational unit
in terms of the number of CPU cores, memory, disk space, and so on. Generally, the more resources

Solution

•
•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling

150

specified, the greater the cost. To save money, it’s important to maximize the work an expensive
computational unit performs, and not let it become inactive for an extended period.

If there are tasks that require a great deal of CPU power in short bursts, consider consolidating
these into a single computational unit that provides the necessary power. However, it’s important to
balance this need to keep expensive resources busy against the contention that could occur if they
are over stressed. For example, long-running, compute-intensive tasks shouldn’t share the same
computational unit.

Consider the following points when implementing this pattern:

Scalability and elasticity. Many cloud solutions implement scalability and elasticity at the level of
the computational unit by starting and stopping instances of units. Avoid grouping tasks that have
conflicting scalability requirements in the same computational unit.

Lifetime. The cloud infrastructure periodically recycles the virtual environment that hosts a
computational unit. When there are many long-running tasks inside a computational unit, it might
be necessary to configure the unit to prevent it from being recycled until these tasks have finished.
Alternatively, design the tasks by using a check-pointing approach that enables them to stop cleanly,
and continue at the point they were interrupted when the computational unit is restarted.

Release cadence. If the implementation or configuration of a task changes frequently, it might
be necessary to stop the computational unit hosting the updated code, reconfigure and redeploy
the unit, and then restart it. This process will also require that all other tasks within the same
computational unit are stopped, redeployed, and restarted.

Security. Tasks in the same computational unit might share the same security context and be able to
access the same resources. There must be a high degree of trust between the tasks, and confidence
that one task isn’t going to corrupt or adversely affect another. Additionally, increasing the number
of tasks running in a computational unit increases the attack surface of the unit. Each task is only as
secure as the one with the most vulnerabilities.

Fault tolerance. If one task in a computational unit fails or behaves abnormally, it can affect the
other tasks running within the same unit. For example, if one task fails to start correctly it can cause
the entire startup logic for the computational unit to fail, and prevent other tasks in the same unit
from running.

Contention. Avoid introducing contention between tasks that compete for resources in the same
computational unit. Ideally, tasks that share the same computational unit should exhibit different
resource utilization characteristics. For example, two compute-intensive tasks should probably not
reside in the same computational unit, and neither should two tasks that consume large amounts
of memory. However, mixing a compute intensive task with a task that requires a large amount of
memory is a workable combination.

Complexity. Combining multiple tasks into a single computational unit adds complexity to the code
in the unit, possibly making it more difficult to test, debug, and maintain.

Stable logical architecture. Design and implement the code in each task so that it shouldn’t need to
change, even if the physical environment the task runs in does change.

Issues and considerations

CHAPTER 6 | Catalog of patterns

151

Use this pattern for tasks that are not cost effective if they run in their own computational units. If a
task spends much of its time idle, running this task in a dedicated unit can be expensive.

This pattern might not be suitable for tasks that perform critical fault-tolerant operations, or tasks
that process highly sensitive or private data and require their own security context. These tasks
should run in their own isolated environment, in a separate computational unit.

Issues and considerations

Other strategies. Consolidating compute resources is only one way to help reduce costs associated
with running multiple tasks concurrently. It requires careful planning and monitoring to ensure that
it remains an effective approach. Other strategies might be more appropriate, depending on the
nature of the work and where the users these tasks are running are located. For example, functional
decomposition of the workload (as described by the Compute Partitioning Guidance) might be a
better option.

When building a cloud service on Azure, it’s possible to consolidate the processing performed
by multiple tasks into a single role. Typically this is a worker role that performs background or
asynchronous processing tasks.

In some cases it’s possible to include background or asynchronous processing tasks in the web role.
This technique helps to reduce costs and simplify deployment, although it can impact the scalability
and responsiveness of the public-facing interface provided by the web role. The article Combining
Multiple Azure Worker Roles into an Azure Web Role contains a detailed description of implementing
background or asynchronous processing tasks in a web role.

The role is responsible for starting and stopping the tasks. When the Azure fabric controller loads
a role, it raises the Start event for the role. You can override the OnStart method of the WebRole or
WorkerRole class to handle this event, perhaps to initialize the data and other resources the tasks in
this method depend on.

When the OnStartmethod completes, the role can start responding to requests. You can find more
information and guidance about using the OnStart and Run methods in a role in the Application
Startup Processes section in the patterns & practices guide Moving Applications to the Cloud.

Keep the code in the OnStart method as concise as possible. Azure doesn’t impose any limit on the
time taken for this method to complete, but the role won’t be able to start responding to network
requests sent to it until this method completes.

When the OnStart method has finished, the role executes the Run method. At this point, the fabric
controller can start sending requests to the role.

Place the code that actually creates the tasks in the Run method. Note that the Run method defines
the lifetime of the role instance. When this method completes, the fabric controller will arrange for
the role to be shut down.

When a role shuts down or is recycled, the fabric controller prevents any more incoming requests
being received from the load balancer and raises the Stop event. You can capture this event by
overriding the OnStop method of the role and perform any tidying up required before the role
terminates.

Example

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/dn589773.aspx

152

Any actions performed in the OnStop method must be completed within five minutes (or 30 seconds
if you are using the Azure emulator on a local computer). Otherwise the Azure fabric controller
assumes that the role has stalled and will force it to stop.
The tasks are started by the Run method that waits for the tasks to complete. The tasks implement
the business logic of the cloud service, and can respond to messages posted to the role through the
Azure load balancer. The figure shows the lifecycle of tasks and resources in a role in an Azure cloud
service.

The WorkerRole.cs file in the ComputeResourceConsolidation.Worker project shows an example of
how you might implement this pattern in an Azure cloud service.

The ComputeResourceConsolidation.Worker project is part of the ComputeResourceConsolidation
solution available for download from GitHub.

The MyWorkerTask1 and the MyWorkerTask2 methods illustrate how to perform different tasks within
the same worker role. The following code shows MyWorkerTask1. This is a simple task that sleeps for
30 seconds and then outputs a trace message. It repeats this process until the task is canceled. The
code in MyWorkerTask2 is similar.

CHAPTER 6 | Catalog of patterns

https://github.com/mspnp/cloud-design-patterns/tree/master/compute-resource-consolidation

153

// A sample worker role task.
private static async Task MyWorkerTask1(CancellationToken ct)
{
 // Fixed interval to wake up and check for work and/or do work.
 var interval = TimeSpan.FromSeconds(30);

 try
 {
 while (!ct.IsCancellationRequested)
 {
 // Wake up and do some background processing if not canceled.
 // TASK PROCESSING CODE HERE
 Trace.TraceInformation(“Doing Worker Task 1 Work”);

 // Go back to sleep for a period of time unless asked to cancel.
 // Task.Delay will throw an OperationCanceledException when canceled.
 await Task.Delay(interval, ct);
 }
 }
 catch (OperationCanceledException)
 {
 // Expect this exception to be thrown in normal circumstances or check
 // the cancellation token. If the role instances are shutting down, a
 // cancellation request will be signaled.
 Trace.TraceInformation(“Stopping service, cancellation requested”);

 // Rethrow the exception.
 throw;
 }
}

The sample code shows a common implementation of a background process. In a real world
application you can follow this same structure, except that you should place your own processing
logic in the body of the loop that waits for the cancellation request.

CHAPTER 6 | Catalog of patterns

154

After the worker role has initialized the resources it uses, the Run method starts the two tasks
concurrently, as shown here.

/// <summary>
/// The cancellation token source use to cooperatively cancel running tasks
/// </summary>
private readonly CancellationTokenSource cts = new CancellationTokenSource();

/// <summary>
/// List of running tasks on the role instance
/// </summary>
private readonly List<Task> tasks = new List<Task>();

// RoleEntry Run() is called after OnStart().
// Returning from Run() will cause a role instance to recycle.
public override void Run()
{
 // Start worker tasks and add to the task list
 tasks.Add(MyWorkerTask1(cts.Token));
 tasks.Add(MyWorkerTask2(cts.Token));

 foreach (var worker in this.workerTasks)
 {
 this.tasks.Add(worker);
 }

 Trace.TraceInformation(“Worker host tasks started”);
 // The assumption is that all tasks should remain running and not return,
 // similar to role entry Run() behavior.
 try
 {
 Task.WaitAll(tasks.ToArray());
 }
 catch (AggregateException ex)
 {
 Trace.TraceError(ex.Message);

 // If any of the inner exceptions in the aggregate exception
 // are not cancellation exceptions then re-throw the exception.
 ex.Handle(innerEx => (innerEx is OperationCanceledException));
 }

 // If there wasn’t a cancellation request, stop all tasks and return from Run()
 // An alternative to canceling and returning when a task exits would be to
 // restart the task.
 if (!cts.IsCancellationRequested)
 {
 Trace.TraceInformation(“Task returned without cancellation request”);
 Stop(TimeSpan.FromMinutes(5));
 }
}
...

In this example, the Run method waits for tasks to be completed. If a task is canceled, the Run
method assumes that the role is being shut down and waits for the remaining tasks to be canceled
before finishing (it waits for a maximum of five minutes before terminating). If a task fails due to an
expected exception, the Run method cancels the task.

CHAPTER 6 | Catalog of patterns

155

The Stop method shown in the following code is called when the fabric controller shuts down the
role instance (it’s invoked from the OnStop method). The code stops each task gracefully by canceling
it. If any task takes more than five minutes to complete, the cancellation processing in the Stop
method ceases waiting and the role is terminated.

You could implement more comprehensive monitoring and exception handling strategies in the Run
method such as restarting tasks that have failed, or including code that enables the role to stop and
start individual tasks.

// Stop running tasks and wait for tasks to complete before returning
// unless the timeout expires.
private void Stop(TimeSpan timeout)
{
 Trace.TraceInformation(“Stop called. Canceling tasks.”);
 // Cancel running tasks.
 cts.Cancel();

 Trace.TraceInformation(“Waiting for canceled tasks to finish and return”);

 // Wait for all the tasks to complete before returning. Note that the
 // emulator currently allows 30 seconds and Azure allows five
 // minutes for processing to complete.
 try
 {
 Task.WaitAll(tasks.ToArray(), timeout);
 }
 catch (AggregateException ex)
 {
 Trace.TraceError(ex.Message);

 // If any of the inner exceptions in the aggregate exception
 // are not cancellation exceptions then rethrow the exception.
 ex.Handle(innerEx => (innerEx is OperationCanceledException));
 }
}

The following patterns and guidance might also be relevant when implementing this pattern:
Autoscaling Guidance. Autoscaling can be used to start and stop instances of service hosting
computational resources, depending on the anticipated demand for processing.
Compute Partitioning Guidance. Describes how to allocate the services and components in a
cloud service in a way that helps to minimize running costs while maintaining the scalability,
performance, availability, and security of the service.
This pattern includes a downloadable sample application.

Related patterns and guidance

•

•

•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://msdn.microsoft.com/library/dn589773.aspx
https://github.com/mspnp/cloud-design-patterns/tree/master/compute-resource-consolidation

156

Event Sourcing pattern
Instead of storing just the current state of the data in a domain, use an append-only store to record
the full series of actions taken on that data. The store acts as the system of record and can be used to
materialize the domain objects. This can simplify tasks in complex domains, by avoiding the need to
synchronize the data model and the business domain, while improving performance, scalability, and
responsiveness. It can also provide consistency for transactional data, and maintain full audit trails
and history that can enable compensating actions.

Context and problem
Most applications work with data. The typical approach is for the application to maintain the current
state of the data by updating it as users work with it. For example, in the traditional create, read,
update, and delete (CRUD) model a typical data process is to read data from the store, make some
modifications to it, and update the current state of the data with the new values—often by using
transactions that lock the data.

The CRUD approach has some limitations:
CRUD systems perform update operations directly against a data store, which can slow down
performance and responsiveness, and limit scalability, due to the processing overhead it requires.

In a collaborative domain with many concurrent users, data update conflicts are more likely
because the update operations take place on a single item of data.

Unless there’s an additional auditing mechanism that records the details of each operation in a
separate log, history is lost.

For a deeper understanding of the limits of the CRUD approach see CRUD, Only When You Can
Afford It.

Solution
The Event Sourcing pattern defines an approach to handling operations on data that’s driven by
a sequence of events, each of which is recorded in an append-only store. Application code sends
a series of events that imperatively describe each action that has occurred on the data to the
event store where they’re persisted. Each event represents a set of changes to the data (such as
AddedItemToOrder).

•

•

•

The events are persisted in an event store that acts as the system of record (the authoritative data
source) about the current state of the data. The event store typically publishes these events so that
consumers can be notified and can handle them if needed. Consumers could, for example, initiate
tasks that apply the operations in the events to other systems, or perform any other associated action
that’s required to complete the operation. Notice that the application code that generates the events
is decoupled from the systems that subscribe to the events.

Typical uses of the events published by the event store are to maintain materialized views of entities
as actions in the application change them, and for integration with external systems. For example,
a system can maintain a materialized view of all customer orders that’s used to populate parts of
the UI. As the application adds new orders, adds or removes items on the order, and adds shipping
information, the events that describe these changes can be handled and used to update the
materialized view.

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/ms978509.aspx
https://msdn.microsoft.com/library/ms978509.aspx
https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view

157

In addition, at any point it’s possible for applications to read the history of events, and use it to
materialize the current state of an entity by playing back and consuming all the events related to that
entity. This can occur on demand to materialize a domain object when handling a request, or through
a scheduled task so that the state of the entity can be stored as a materialized view to support the
presentation layer.

The figure shows an overview of the pattern, including some of the options for using the event
stream such as creating a materialized view, integrating events with external applications and
systems, and replaying events to create projections of the current state of specific entities.

The Event Sourcing pattern provides the following advantages:
Events are immutable and can be stored using an append-only operation. The user interface,
workflow, or process that initiated an event can continue, and tasks that handle the events can run
in the background. This combined with the fact that there’s no contention during the processing
of transactions can vastly improve performance and scalability for applications, especially for the
presentation level or user interface.

Events are simple objects that describe some action that occurred together with any associated data
required to describe the action represented by the event. Events don’t directly update a data store.
They’re simply recorded for handling at the appropriate time. This can simplify implementation and
management.

Events typically have meaning for a domain expert, whereas object-relational impedance mismatch
can make complex database tables hard to understand. Tables are artificial constructs that represent
the current state of the system, not the events that occurred.

Event sourcing can help prevent concurrent updates from causing conflicts because it avoids the
requirement to directly update objects in the data store. However, the domain model must still be
designed to protect itself from requests that might result in an inconsistent state.

CHAPTER 6 | Catalog of patterns

158

The append-only storage of events provides an audit trail that can be used to monitor actions taken
against a data store, regenerate the current state as materialized views or projections by replaying
the events at any time, and assist in testing and debugging the system. In addition, the requirement
to use compensating events to cancel changes provides a history of changes that were reversed,
which wouldn’t be the case if the model simply stored the current state. The list of events can also be
used to analyze application performance and detect user behavior trends or to obtain other useful
business information.

The event store raises events, and tasks perform operations in response to those events. This
decoupling of the tasks from the events provides flexibility and extensibility. Tasks know about the
type of event and the event data, but not about the operation that triggered the event. In addition,
multiple tasks can handle each event. This enables easy integration with other services and systems
that only listen for new events raised by the event store. However, the event sourcing events tend to
be very low level, and it might be necessary to generate specific integration events instead.

Event sourcing is commonly combined with the CQRS pattern by performing the data management
tasks in response to the events, and by materializing views from the stored events.

Issues and considerations
Consider the following points when deciding how to implement this pattern:
The system will only be eventually consistent when creating materialized views or generating
projections of data by replaying events. There’s some delay between an application adding events to
the event store as the result of handling a request, the events being published, and consumers of the
events handling them. During this period, new events that describe further changes to entities might
have arrived at the event store.

Notes:
See the Data Consistency Primer for information about eventual consistency.

The event store is the permanent source of informatio, and so the event data should never be
updated. The only way to update an entity to undo a change is to add a compensating event to the
event store. If the format (rather than the data) of the persisted events needs to change, perhaps
during a migration, it can be difficult to combine existing events in the store with the new version. It
might be necessary to iterate through all the events making changes so they’re compliant with the
new format, or add new events that use the new format. Consider using a version stamp on each
version of the event schema to maintain both the old and the new event formats.

Multi-threaded applications and multiple instances of applications might be storing events in the
event store. The consistency of events in the event store is vital, as is the order of events that affect a
specific entity (the order that changes occur to an entity affects its current state). Adding a timestamp
to every event can help to avoid issues. Another common practice is to annotate each event resulting
from a request with an incremental identifier. If two actions attempt to add events for the same entity
at the same time, the event store can reject an event that matches an existing entity identifier and
event identifier.

There’s no standard approach, or existing mechanisms such as SQL queries, for reading the events to
obtain information. The only data that can be extracted is a stream of events using an event identifier
as the criteria. The event ID typically maps to individual entities. The current state of an entity can be
determined only by replaying all of the events that relate to it against the original state of that entity.

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/dn589800.aspx

159

The length of each event stream affects managing and updating the system. If the streams are large,
consider creating snapshots at specific intervals such as a specified number of events. The current
state of the entity can be obtained from the snapshot and by replaying any events that occurred after
that point in time. For more information about creating snapshots of data, see Snapshot on Martin
Fowler’s Enterprise Application Architecture website and Master-Subordinate Snapshot Replication.

Even though event sourcing minimizes the chance of conflicting updates to the data, the application
must still be able to deal with inconsistencies that result from eventual consistency and the lack of
transactions. For example, an event that indicates a reduction in stock inventory might arrive in the
data store while an order for that item is being placed, resulting in a requirement to reconcile the two
operations either by advising the customer or creating a back order.

Event publication might be “at least once,” and so consumers of the events must be idempotent.
They must not reapply the update described in an event if the event is handled more than once.
For example, if multiple instances of a consumer maintain an aggregate an entity’s property, such
as the total number of orders placed, only one must succeed in incrementing the aggregate when
an order placed event occurs. While this isn’t a key characteristic of event sourcing, it’s the usual
implementation decision.

When to use this pattern
Use this pattern in the following scenarios:

When you want to capture intent, purpose, or reason in the data. For example, changes to a
customer entity can be captured as a series of specific event types such as Moved home, Closed
account, or Deceased.

When it’s vital to minimize or completely avoid the occurrence of conflicting updates to data.

When you want to record events that occur, and be able to replay them to restore the state of
a system, roll back changes, or keep a history and audit log. For example, when a task involves
multiple steps you might need to execute actions to revert updates and then replay some steps
to bring the data back into a consistent state.

When using events is a natural feature of the operation of the application, and requires little
additional development or implementation effort.

When you need to decouple the process of inputting or updating data from the tasks required
to apply these actions. This might be to improve UI performance, or to distribute events to other
listeners that take action when the events occur. For example, integrating a payroll system with
an expense submission website so that events raised by the event store in response to data
updates made in the website are consumed by both the website and the payroll system.

When you want flexibility to be able to change the format of materialized models and entity data
if requirements change, or—when used in conjunction with CQRS—you need to adapt a read
model or the views that expose the data.

When used in conjunction with CQRS, and eventual consistency is acceptable while a read model
is updated, or the performance impact of rehydrating entities and data from an event stream is
acceptable.

•

•

•

•

•

•

•

CHAPTER 6 | Catalog of patterns

160

This pattern might not be useful in the following situations:
Small or simple domains, systems that have little or no business logic, or nondomain systems
that naturally work well with traditional CRUD data management mechanisms.

Systems where consistency and real-time updates to the views of the data are required.

Systems where audit trails, history, and capabilities to roll back and replay actions are not
required.

Systems where there’s only a very low occurrence of conflicting updates to the underlying data.
For example, systems that predominantly add data rather than updating it.

•

•
•

•

A conference management system needs to track the number of completed bookings for a
conference so that it can check whether there are seats still available when a potential attendee tries
to make a booking. The system could store the total number of bookings for a conference in at least
two ways:

•	 The system could store the information about the total number of bookings as a separate entity
in a database that holds booking information. As bookings are made or canceled, the system
could increment or decrement this number as appropriate. This approach is simple in theory, but
can cause scalability issues if a large number of attendees are attempting to book seats during a
short period of time. For example, in the last day or so prior to the booking period closing.

•	 The system could store information about bookings and cancellations as events held in an
event store. It could then calculate the number of seats available by replaying these events. This
approach can be more scalable due to the immutability of events. The system only needs to be
able to read data from the event store, or append data to the event store. Event information
about bookings and cancellations is never modified.

The following diagram illustrates how the seat reservation subsystem of the conference management
system might be implemented using event sourcing.

Example

CHAPTER 6 | Catalog of patterns

161

The sequence of actions for reserving two seats is as follows:
The user interface issues a command to reserve seats for two attendees. The command is
handled by a separate command handler. A piece of logic that is decoupled from the user
interface and is responsible for handling requests posted as commands.

An aggregate containing information about all reservations for the conference is constructed
by querying the events that describe bookings and cancellations. This aggregate is called
SeatAvailability, and is contained within a domain model that exposes methods for querying and
modifying the data in the aggregate.

Some optimizations to consider are using snapshots (so that you don’t need to query and replay
the full list of events to obtain the current state of the aggregate), and maintaining a cached copy
of the aggregate in memory.

The command handler invokes a method exposed by the domain model to make the
reservations.

The SeatAvailability aggregate records an event containing the number of seats that were
reserved. The next time the aggregate applies events, all the reservations will be used to
compute how many seats remain.

The system appends the new event to the list of events in the event store.

1.

2.

3.

4.

5.

CHAPTER 6 | Catalog of patterns

162

If a user cancels a seat, the system follows a similar process except the command handler issues a
command that generates a seat cancellation event and appends it to the event store.

As well as providing more scope for scalability, using an event store also provides a complete history,
or audit trail, of the bookings and cancellations for a conference. The events in the event store are
the accurate record. There is no need to persist aggregates in any other way because the system can
easily replay the events and restore the state to any point in time.

You can find more information about this example in Introducing Event Sourcing.

Related patterns and guidance
The following patterns and guidance might also be relevant when implementing this pattern:

Command and Query Responsibility Segregation (CQRS) Pattern. The write store that provides
the permanent source of information for a CQRS implementation is often based on an
implementation of the Event Sourcing pattern. Describes how to segregate the operations that
read data in an application from the operations that update data by using separate interfaces.

Materialized View Pattern. The data store used in a system based on event sourcing is typically
not well suited to efficient querying. Instead, a common approach is to generate prepopulated
views of the data at regular intervals, or when the data changes. Shows how this can be done.

Compensating Transaction Pattern. The existing data in an event sourcing store is not updated,
instead new entries are added that transition the state of entities to the new values. To reverse a
change, compensating entries are used because it isn’t possible to simply reverse the previous
change. Describes how to undo the work that was performed by a previous operation.

Data Consistency Primer. When using event sourcing with a separate read store or materialized
views, the read data won’t be immediately consistent, instead it’ll be only eventually consistent.
Summarizes the issues surrounding maintaining consistency over distributed data.

Data Partitioning Guidance. Data is often partitioned when using event sourcing to improve
scalability, reduce contention, and optimize performance. Describes how to divide data into
discrete partitions, and the issues that can arise.

Greg Young’s post Why use Event Sourcing?

•

•

•

•

•

•

External Configuration Store pattern
Move configuration information out of the application deployment package to a centralized location.
This can provide opportunities for easier management and control of configuration data, and for
sharing configuration data across applications and application instances.

Context and problem
The majority of application runtime environments include configuration information that’s held
in files deployed with the application. In some cases, it’s possible to edit these files to change the
application behavior after it’s been deployed. However, changes to the configuration require the
application be redeployed, often resulting in unacceptable downtime and other administrative
overhead.

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/jj591559.aspx
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://msdn.microsoft.com/library/dn589800.aspx
https://msdn.microsoft.com/library/dn589800.aspx
http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/

163

Solution

Store the configuration information in external storage, and provide an interface that can be used
to quickly and efficiently read and update configuration settings. The type of external store depends
on the hosting and runtime environment of the application. In a cloud-hosted scenario it’s typically a
cloud-based storage service, but could be a hosted database or other system.

The backing store you choose for configuration information should have an interface that provides
consistent and easy-to-use access. It should expose the information in a correctly typed and
structured format. The implementation might also need to authorize users access in order to protect
configuration data, and be flexible enough to allow storage of multiple versions of the configuration
(such as development, staging, or production, including multiple release versions of each one).

Many built-in configuration systems read the data when the application starts up, and cache the data
in memory to provide fast access and minimize the impact on application performance. Depending
on the type of backing store used, and the latency of this store, it might be helpful to implement a
caching mechanism within the external configuration store. For more information, see the Caching
Guidance. The figure illustrates an overview of the External Configuration Store pattern with optional
local cache.

Local configuration files also limit the configuration to a single application, but sometimes it would
be useful to share configuration settings across multiple applications. Examples include database
connection strings, UI theme information, or the URLs of queues and storage used by a related set of
applications.

It’s challenging to manage changes to local configurations across multiple running instances of
the application, especially in a cloud-hosted scenario. It can result in instances using different
configuration settings while the update is being deployed.

In addition, updates to applications and components might require changes to configuration
schemas. Many configuration systems don’t support different versions of configuration information.

CHAPTER 6 | Catalog of patterns

164

Issues and considerations

Consider the following points when deciding how to implement this pattern:
Choose a backing store that offers acceptable performance, high availability, robustness, and can
be backed up as part of the application maintenance and administration process. In a cloud-hosted
application, using a cloud storage mechanism is usually a good choice to meet these requirements.

Design the schema of the backing store to allow flexibility in the types of information it can hold.
Ensure that it provides for all configuration requirements such as typed data, collections of settings,
multiple versions of settings, and any other features that the applications using it require. The
schema should be easy to extend to support additional settings as requirements change.

Consider the physical capabilities of the backing store, how it relates to the way configuration
information is stored, and the effects on performance. For example, storing an XML document
containing configuration information will require either the configuration interface or the application
to parse the document in order to read individual settings. It’ll make updating a setting more
complicated, though caching the settings can help to offset slower read performance.

Consider how the configuration interface will permit control of the scope and inheritance of
configuration settings. For example, it might be a requirement to scope configuration settings at the
organization, application, and the machine level. It might need to support delegation of control over
access to different scopes, and to prevent or allow individual applications to override settings.

Ensure that the configuration interface can expose the configuration data in the required formats
such as typed values, collections, key/value pairs, or property bags.

Consider how the configuration store interface will behave when settings contain errors, or don’t
exist in the backing store. It might be appropriate to return default settings and log errors. Also
consider aspects such as the case sensitivity of configuration setting keys or names, the storage and
handling of binary data, and the ways that null or empty values are handled.

Consider how to protect the configuration data to allow access to only the appropriate users and
applications. This is likely a feature of the configuration store interface, but it’s also necessary
to ensure that the data in the backing store can’t be accessed directly without the appropriate
permission. Ensure strict separation between the permissions required to read and to write
configuration data. Also consider whether you need to encrypt some or all of the configuration
settings, and how this’ll be implemented in the configuration store interface.

Centrally stored configurations, which change application behavior during runtime, are critically
important and should be deployed, updated, and managed using the same mechanisms as deploying
application code. For example, changes that can affect more than one application must be carried
out using a full test and staged deployment approach to ensure that the change is appropriate for all
applications that use this configuration. If an administrator edits a setting to update one application,
it could adversely impact other applications that use the same setting.

If an application caches configuration information, the application needs to be alerted if the
configuration changes. It might be possible to implement an expiration policy over cached
configuration data so that this information is automatically refreshed periodically and any changes
picked up (and acted on).

CHAPTER 6 | Catalog of patterns

165

When to use this pattern
This pattern is useful for:

Configuration settings that are shared between multiple applications and application instances,
or where a standard configuration must be enforced across multiple applications and application
instances.

A standard configuration system that doesn’t support all of the required configuration settings,
such as storing images or complex data types.

As a complementary store for some of the settings for applications, perhaps allowing
applications to override some or all of the centrally-stored settings.

As a way to simplify administration of multiple applications, and optionally for monitoring use of
configuration settings by logging some or all types of access to the configuration store.

Example

In a Microsoft Azure hosted application, a typical choice for storing configuration information
externally is to use Azure Storage. This is resilient, offers high performance, and is replicated three
times with automatic failover to offer high availability. Azure Table storage provides a key/value store
with the ability to use a flexible schema for the values. Azure Blob storage provides a hierarchical,
container-based store that can hold any type of data in individually named blobs.

The following example shows how a configuration store can be implemented over Blob storage
to store and expose configuration information. The BlobSettingsStore class abstracts Blob storage
for holding configuration information, and implements the ISettingsStore interface shown in the
following code.

•

•

•

•

public interface ISettingsStore
{
 Task<string> GetVersionAsync();

 Task<Dictionary<string, string>> FindAllAsync();
}

This interface defines methods for retrieving and updating configuration settings held in the
configuration store, and includes a version number that can be used to detect whether any
configuration settings have been modified recently. The BlobSettingsStore class uses the ETag
property of the blob to implement versioning. The ETag property is updated automatically each time
the blob is written.

By design, this simple solution exposes all configuration settings as string values rather than typed
values.

The ExternalConfigurationManager class provides a wrapper around a BlobSettingsStore object.
An application can use this class to store and retrieve configuration information. This class uses the
Microsoft Reactive Extensions library to expose any changes made to the configuration through an
implementation of the IObservable interface. If a setting is modified by calling the SetAppSetting
method, the Changed event is raised and all subscribers to this event will be notified.

Note that all settings are also cached in a Dictionary object inside the ExternalConfigurationManager

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/hh242985.aspx

166

class for fast access. The GetSetting method used to retrieve a configuration setting reads the data
from the cache. If the setting isn’t found in the cache, it’s retrieved from the BlobSettingsStore object
instead.

The GetSettings method invokes the CheckForConfigurationChanges method to detect whether the
configuration information in blob storage has changed. It does this by examining the version number
and comparing it with the current version number held by the ExternalConfigurationManager object.
If one or more changes have occurred, the Changed event is raised and the configuration settings
cached in the Dictionary object are refreshed. This is an application of the Cache-Aside pattern.

The following code sample shows how the Changed event, the GetSettings method, and the
CheckForConfigurationChanges method are implemented:

public class ExternalConfigurationManager : IDisposable
{
 // An abstraction of the configuration store.
 private readonly ISettingsStore settings;
 private readonly ISubject<KeyValuePair<string, string>> changed;
 ...
 private readonly ReaderWriterLockSlim settingsCacheLock = new ReaderWriterLockSlim();
 private readonly SemaphoreSlim syncCacheSemaphore = new SemaphoreSlim(1);
 ...
 private Dictionary<string, string> settingsCache;
 private string currentVersion;
 ...
 public ExternalConfigurationManager(ISettingsStore settings, ...)
 {
 this.settings = settings;
 ...
 }
 ...
 public IObservable<KeyValuePair<string, string>> Changed => this.changed.AsObservable();
 ...

 public string GetAppSetting(string key)
 {
 ...
 // Try to get the value from the settings cache.
 // If there’s a cache miss, get the setting from the settings store and refresh the settings
cache.

 string value;
 try
 {
 this.settingsCacheLock.EnterReadLock();

 this.settingsCache.TryGetValue(key, out value);
 }
 finally
 {
 this.settingsCacheLock.ExitReadLock();
 }

 return value;
 }
 ...
 private void CheckForConfigurationChanges()
 {
 try
 {
 // It is assumed that updates are infrequent.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/cache-aside

167

 // To avoid race conditions in refreshing the cache, synchronize access to the in-memory
cache.
 await this.syncCacheSemaphore.WaitAsync();

 var latestVersion = await this.settings.GetVersionAsync();

 // If the versions are the same, nothing has changed in the configuration.
 if (this.currentVersion == latestVersion) return;

 // Get the latest settings from the settings store and publish changes.
 var latestSettings = await this.settings.FindAllAsync();

 // Refresh the settings cache.
 try
 {
 this.settingsCacheLock.EnterWriteLock();

 if (this.settingsCache != null)
 {
 //Notify settings changed
 latestSettings.Except(this.settingsCache).ToList().ForEach(kv => this.changed.
OnNext(kv));
 }
 this.settingsCache = latestSettings;
 }
 finally
 {
 this.settingsCacheLock.ExitWriteLock();
 }

 // Update the current version.
 this.currentVersion = latestVersion;
 }
 catch (Exception ex)
 {
 this.changed.OnError(ex);
 }
 finally
 {
 this.syncCacheSemaphore.Release();
 }
 }
}

The ExternalConfigurationManager class also provides a property named Environment. This property
supports varying configurations for an application running in different environments, such as staging
and production.

An ExternalConfigurationManager object can also query the BlobSettingsStore object periodically for
any changes. In the following code, the StartMonitor method calls CheckForConfigurationChanges at
an interval to detect any changes and raise the Changed event, as described earlier.

CHAPTER 6 | Catalog of patterns

168

public class ExternalConfigurationManager : IDisposable
{
 ...
 private readonly ISubject<KeyValuePair<string, string>> changed;
 private Dictionary<string, string> settingsCache;
 private readonly CancellationTokenSource cts = new CancellationTokenSource();
 private Task monitoringTask;
 private readonly TimeSpan interval;

 private readonly SemaphoreSlim timerSemaphore = new SemaphoreSlim(1);
 ...
 public ExternalConfigurationManager(string environment) : this(new
BlobSettingsStore(environment), TimeSpan.FromSeconds(15), environment)
 {
 }

 public ExternalConfigurationManager(ISettingsStore settings, TimeSpan interval, string
environment)
 {
 this.settings = settings;
 this.interval = interval;
 this.CheckForConfigurationChangesAsync().Wait();
 this.changed = new Subject<KeyValuePair<string, string>>();
 this.Environment = environment;
 }
 ...
 /// <summary>
 /// Check to see if the current instance is monitoring for changes
 /// </summary>
 public bool IsMonitoring => this.monitoringTask != null && !this.monitoringTask.IsCompleted;

 /// <summary>
 /// Start the background monitoring for configuration changes in the central store
 /// </summary>
 public void StartMonitor()
 {
 if (this.IsMonitoring)
 return;

 try
 {
 this.timerSemaphore.Wait();

 // Check again to make sure we are not already running.
 if (this.IsMonitoring)
 return;

 // Start running our task loop.
 this.monitoringTask = ConfigChangeMonitor();
 }
 finally
 {
 this.timerSemaphore.Release();
 }
 }

 /// <summary>
 /// Loop that monitors for configuration changes
 /// </summary>
 /// <returns></returns>
 public async Task ConfigChangeMonitor()
 {
 while (!cts.Token.IsCancellationRequested)
 {

CHAPTER 6 | Catalog of patterns

169

 await this.CheckForConfigurationChangesAsync();
 await Task.Delay(this.interval, cts.Token);
 }
 }

 /// <summary>
 /// Stop monitoring for configuration changes
 /// </summary>
 public void StopMonitor()
 {
 try
 {
 this.timerSemaphore.Wait();

 // Signal the task to stop.
 this.cts.Cancel();

 // Wait for the loop to stop.
 this.monitoringTask.Wait();

 this.monitoringTask = null;
 }
 finally
 {
 this.timerSemaphore.Release();
 }
 }

 public void Dispose()
 {
 this.cts.Cancel();
 }
 ...
}

public static class ExternalConfiguration
{
 private static readonly Lazy<ExternalConfigurationManager> configuredInstance = new
Lazy<ExternalConfigurationManager>(
 () =>
 {
 var environment = CloudConfigurationManager.GetSetting(“environment”);
 return new ExternalConfigurationManager(environment);
 });

 public static ExternalConfigurationManager Instance => configuredInstance.Value;
}

The ExternalConfigurationManager class is instantiated as a singleton instance by the
ExternalConfiguration class shown below.

The following code is taken from the WorkerRole class in the ExternalConfigurationStore.Cloud
project. It shows how the application uses the ExternalConfiguration class to read a setting.

CHAPTER 6 | Catalog of patterns

170

public override void Run()
{
 // Start monitoring configuration changes.
 ExternalConfiguration.Instance.StartMonitor();

 // Get a setting.
 var setting = ExternalConfiguration.Instance.GetAppSetting(“setting1”);
 Trace.TraceInformation(“Worker Role: Get setting1, value: “ + setting);

 this.completeEvent.WaitOne();
}

public override bool OnStart()
{
 ...
 // Subscribe to the event.
 ExternalConfiguration.Instance.Changed.Subscribe(
 m => Trace.TraceInformation(“Configuration has changed. Key:{0} Value:{1}”,
 m.Key, m.Value),
 ex => Trace.TraceError(“Error detected: “ + ex.Message));
 ...
}

The following code, also from the WorkerRole class, shows how the application subscribes to
configuration events.

Related patterns and guidance
A sample that demonstrates this pattern is available on GitHub.

Federated Identity pattern
Delegate authentication to an external identity provider. This can simplify development, minimize the
requirement for user administration, and improve the user experience of the application.

Context and problem
Users typically need to work with multiple applications provided and hosted by different
organizations they have a business relationship with. These users might be required to use specific
(and different) credentials for each one. This can:

Cause a disjointed user experience. Users often forget sign-in credentials when they have
many different ones.

Expose security vulnerabilities. When a user leaves the company the account must immediately
be deprovisioned. It’s easy to overlook this in large organizations.

Complicate user management. Administrators must manage credentials for all of the users, and
perform additional tasks such as providing password reminders.

Users typically prefer to use the same credentials for all these applications.

•

•

•

•

CHAPTER 6 | Catalog of patterns

https://github.com/mspnp/cloud-design-patterns/tree/master/external-configuration-store

171

Solution
Implement an authentication mechanism that can use federated identity. Separate user
authentication from the application code, and delegate authentication to a trusted identity provider.
This can simplify development and allow users to authenticate using a wider range of identity
providers (IdP) while minimizing the administrative overhead. It also allows you to clearly decouple
authentication from authorization.

The trusted identity providers include corporate directories, on-premises federation services, other
security token services (STS) provided by business partners, or social identity providers that can
authenticate users who have, for example, a Microsoft, Google, Yahoo!, or Facebook account.

The figure illustrates the Federated Identity pattern when a client application needs to access a
service that requires authentication. The authentication is performed by an IdP that works in concert
with an STS. The IdP issues security tokens that provide information about the authenticated user.
This information, referred to as claims, includes the user’s identity, and might also include other
information such as role membership and more granular access rights.

This model is often called claims-based access control. Applications and services authorize
access to features and functionality based on the claims contained in the token. The service that
requires authentication must trust the IdP. The client application contacts the IdP that performs
the authentication. If the authentication is successful, the IdP returns a token containing the claims
that identify the user to the STS (note that the IdP and STS can be the same service). The STS can
transform and augment the claims in the token based on predefined rules, before returning it to the
client. The client application can then pass this token to the service as proof of its identity.

There might be additional STSs in the chain of trust. For example, in the scenario described later,
an on-premises STS trusts another STS that is responsible for accessing an identity provider to
authenticate the user. This approach is common in enterprise scenarios where there’s an on-premises
STS and directory.

CHAPTER 6 | Catalog of patterns

172

Federated authentication provides a standards-based solution to the issue of trusting identities
across diverse domains, and can support single sign-on. It’s becoming more common across all types
of applications, especially cloud-hosted applications, because it supports single sign-on without
requiring a direct network connection to identity providers. The user doesn’t have to enter credentials
for every application. This increases security because it prevents the creation of credentials required
to access many different applications, and it also hides the user’s credentials from all but the original
identity provider. Applications see just the authenticated identity information contained within the
token.

Federated identity also has the major advantage that management of the identity and credentials is
the responsibility of the identity provider. The application or service doesn’t need to provide identity
management features. In addition, in corporate scenarios, the corporate directory doesn’t need to
know about the user if it trusts the identity provider. This removes all the administrative overhead of
managing the user identity within the directory.

Issues and considerations
Consider the following when designing applications that implement federated authentication:

Authentication can be a single point of failure. If you deploy your application to multiple
datacenters, consider deploying your identity management mechanism to the same datacenters
to maintain application reliability and availability.

Authentication tools make it possible to configure access control based on role claims contained
in the authentication token. This is often referred to as role-based access control (RBAC), and it
can allow a more granular level of control over access to features and resources.

Unlike a corporate directory, claims-based authentication using social identity providers doesn’t
usually provide information about the authenticated user other than an email address, and
perhaps a name. Some social identity providers, such as a Microsoft account, provide only a
unique identifier. The application usually needs to maintain some information on registered
users, and be able to match this information to the identifier contained in the claims in the
token. Typically this is done through registration when the user first accesses the application, and
information is then injected into the token as additional claims after each authentication.

If there’s more than one identity provider configured for the STS, it must detect which identity
provider the user should be redirected to for authentication. This process is called home realm
discovery. The STS might be able to do this automatically based on an email address or user
name that the user provides, a subdomain of the application that the user is accessing, the
user’s IP address scope, or on the contents of a cookie stored in the user’s browser. For example,
if the user entered an email address in the Microsoft domain, such as user@live.com, the STS
will redirect the user to the Microsoft account sign-in page. On later visits, the STS could use
a cookie to indicate that the last sign in was with a Microsoft account. If automatic discovery
can’t determine the home realm, the STS will display a home realm discovery page that lists the
trusted identity providers, and the user must select the one they want to use.

•

•

•

•

CHAPTER 6 | Catalog of patterns

173

This pattern is useful for scenarios such as:
Single sign-on in the enterprise. In this scenario you need to authenticate employees for
corporate applications that are hosted in the cloud outside the corporate security boundary,
without requiring them to sign in every time they visit an application. The user experience is the
same as when using on-premises applications where they’re authenticated when signing in to a
corporate network, and from then on have access to all relevant applications without needing to
sign in again.

Federated identity with multiple partners. In this scenario you need to authenticate both
corporate employees and business partners who don’t have accounts in the corporate directory.
This is common in business-to-business applications, applications that integrate with third-party
services, and where companies with different IT systems have merged or shared resources.

Federated identity in SaaS applications. In this scenario independent software vendors
provide a ready-to-use service for multiple clients or tenants. Each tenant authenticates using a
suitable identity provider. For example, business users will use their corporate credentials, while
consumers and clients of the tenant will use their social identity credentials.

This pattern might not be useful in the following situations:
All users of the application can be authenticated by one identity provider, and there’s no
requirement to authenticate using any other identity provider. This is typical in business
applications that use a corporate directory (accessible within the application) for authentication,
by using a VPN, or (in a cloud-hosted scenario) through a virtual network connection between
the on-premises directory and the application.

The application was originally built using a different authentication mechanism, perhaps with
custom user stores, or doesn’t have the capability to handle the negotiation standards used by
claims-based technologies. Retrofitting claims-based authentication and access control into
existing applications can be complex, and probably not cost effective.

When to use this pattern

•

•

•

•

•

Example
An organization hosts a multi-tenant software as a service (SaaS) application in Microsoft Azure. The
application includes a website that tenants can use to manage the application for their own users.
The application allows tenants to access the website by using a federated identity that is generated
by Active Directory Federation Services (ADFS) when a user is authenticated by that organization’s
own Active Directory.

CHAPTER 6 | Catalog of patterns

174

The figure shows how tenants authenticate with their own identity provider (step 1), in this case
ADFS. After successfully authenticating a tenant, ADFS issues a token. The client browser forwards
this token to the SaaS application’s federation provider, which trusts tokens issued by the tenant’s
ADFS, in order to get back a token that is valid for the SaaS federation provider (step 2). If necessary,
the SaaS federation provider performs a transformation on the claims in the token into claims
that the application recognizes (step 3) before returning the new token to the client browser. The
application trusts tokens issued by the SaaS federation provider and uses the claims in the token to
apply authorization rules (step 4).

Tenants won’t need to remember separate credentials to access the application, and an administrator
at the tenant’s company can configure in its own ADFS the list of users that can access the
application.

Microsoft Azure Active Directory
Active Directory Domain Services
Active Directory Federation Services
Identity management for multitenant applications in Microsoft Azure
Multitenant Applications in Azure

Related guidance

Gatekeeper pattern
Protect applications and services by using a dedicated host instance that acts as a broker between
clients and the application or service, validates and sanitizes requests, and passes requests and data
between them. This can provide an additional layer of security, and limit the attack surface of the
system.

Context and problem
Applications expose their functionality to clients by accepting and processing requests. In cloud-
hosted scenarios, applications expose endpoints clients connect to, and typically include the code
to handle the requests from clients. This code performs authentication and validation, some or all
request processing, and is likely to accesses storage and other services on behalf of the client.

If a malicious user is able to compromise the system and gain access to the application’s hosting
environment, the security mechanisms it uses such as credentials and storage keys, and the services
and data it accesses, are exposed. As a result, the malicious user can gain unrestrained access to
sensitive information and other services.

Solution
To minimize the risk of clients gaining access to sensitive information and services, decouple hosts or
tasks that expose public endpoints from the code that processes requests and accesses storage. You
can achieve this by using a façade or a dedicated task that interacts with clients and then hands off
the request—perhaps through a decoupled interface—to the hosts or tasks that’ll handle the request.
The figure provides a high-level overview of this pattern.

•
•
•
•
•

CHAPTER 6 | Catalog of patterns

https://azure.microsoft.com/en-us/services/active-directory/
https://msdn.microsoft.com/library/bb897402.aspx
https://msdn.microsoft.com/library/bb897402.aspx
https://docs.microsoft.com/en-us/azure/architecture/multitenant-identity/
https://docs.microsoft.com/en-us/azure/dotnet-develop-multitenant-applications

175

The gatekeeper pattern can be used to simply protect storage, or it can be used as a more
comprehensive façade to protect all of the functions of the application. The important factors are:

Controlled validation. The gatekeeper validates all requests, and rejects those that don’t meet
validation requirements.

Limited risk and exposure. The gatekeeper doesn’t have access to the credentials or keys used
by the trusted host to access storage and services. If the gatekeeper is compromised, the attacker
doesn’t get access to these credentials or keys.

Appropriate security. The gatekeeper runs in a limited privilege mode, while the rest of the
application runs in the full trust mode required to access storage and services. If the gatekeeper
is compromised, it can’t directly access the application services or data.

This pattern acts like a firewall in a typical network topography. It allows the gatekeeper to examine
requests and make a decision about whether to pass the request on to the trusted host (sometimes
called the keymaster) that performs the required tasks. This decision typically requires the gatekeeper
to validate and sanitize the request content before passing it on to the trusted host.

•

•

•

Issues and considerations
Consider the following points when deciding how to implement this pattern:

Ensure that the trusted hosts the gatekeeper passes requests to expose only internal or protected
endpoints, and connect only to the gatekeeper. The trusted hosts shouldn’t expose any external
endpoints or interfaces.

The gatekeeper must run in a limited privilege mode. Typically this means running the
gatekeeper and the trusted host in separate hosted services or virtual machines.

The gatekeeper shouldn’t perform any processing related to the application or services, or access
any data. Its function is purely to validate and sanitize requests. The trusted hosts might need to
perform additional validation of requests, but the core validation should be performed by the
gatekeeper.

Use a secure communication channel (HTTPS, SSL, or TLS) between the gatekeeper and the
trusted hosts or tasks where this is possible. However, some hosting environments don’t support
HTTPS on internal endpoints.
Adding the extra layer to the application to implement the gatekeeper pattern is likely to have
some impact on performance due to the additional processing and network communication it
requires.

•

•

•

•

CHAPTER 6 | Catalog of patterns

176

The gatekeeper instance could be a single point of failure. To minimize the impact of a failure,
consider deploying additional instances and using an autoscaling mechanism to ensure capacity
to maintain availability.

•

•

•

This pattern is useful for:
Applications that handle sensitive information, expose services that must have a high degree
of protection from malicious attacks, or perform mission-critical operations that shouldn’t be
disrupted.

Distributed applications where it’s necessary to perform request validation separately from the
main tasks, or to centralize this validation to simplify maintenance and administration.

When to use this pattern

In a cloud-hosted scenario, this pattern can be implemented by decoupling the gatekeeper role or
virtual machine from the trusted roles and services in an application. Do this by using an internal
endpoint, a queue, or storage as an intermediate communication mechanism. The figure illustrates
using an internal endpoint.

Example

The Valet Key pattern might also be relevant when implementing the Gatekeeper pattern. When
communicating between the Gatekeeper and trusted roles it’s good practice to enhance security by
using keys or tokens that limit permissions for accessing resources.

Related patterns

Gateway Aggregation pattern
Use a gateway to aggregate multiple individual requests into a single request. This pattern is useful
when a client must make multiple calls to different backend systems to perform an operation.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/valet-key

177

To perform a single task, a client may have to make multiple calls to various backend services. An
application that relies on many services to perform a task must expend resources on each request.
When any new feature or service is added to the application, additional requests are needed, further
increasing resource requirements and network calls. This chattiness between a client and a backend
can adversely impact the performance and scale of the application. Microservice architectures have
made this problem more common, as applications built around many smaller services naturally have
a higher amount of cross-service calls.

In the following diagram, the client sends requests to each service (1,2,3). Each service processes
the request and sends the response back to the application (4,5,6). Over a cellular network with
typically high latency, using individual requests in this manner is inefficient and could result in broken
connectivity or incomplete requests. While each request may be done in parallel, the application
must send, wait, and process data for each request, all on separate connections, increasing the
chance of failure.

Context and problem

Use a gateway to reduce chattiness between the client and the services. The gateway receives client
requests, dispatches requests to the various backend systems, and then aggregates the results and
sends them back to the requesting client.

This pattern can reduce the number of requests that the application makes to backend services, and
improve application performance over high-latency networks.

In the following diagram, the application sends a request to the gateway (1). The request contains
a package of additional requests. The gateway decomposes these and processes each request by
sending it to the relevant service (2). Each service returns a response to the gateway (3). The gateway
combines the responses from each service and sends the response to the application (4). The
application makes a single request and receives only a single response from the gateway.

Solution

CHAPTER 6 | Catalog of patterns

178

The gateway should not introduce service coupling across the backend services.

The gateway should be located near the backend services to reduce latency as much as possible.

The gateway service may introduce a single point of failure. Ensure the gateway is properly
designed to meet your application’s availability requirements.
The gateway may introduce a bottleneck. Ensure the gateway has adequate performance to
handle load and can be scaled to meet your anticipated growth.

Perform load testing against the gateway to ensure you don’t introduce cascading failures for
services.

Implement a resilient design, using techniques such as bulkheads, circuit breaking, retry, and
timeouts.

If one or more service calls takes too long, it may be acceptable to timeout and return a partial
set of data. Consider how your application will handle this scenario.

Use asynchronous I/O to ensure that a delay at the backend doesn’t cause performance issues in
the application.

Implement distributed tracing using correlation IDs to track each individual call.

Monitor request metrics and response sizes.

Consider returning cached data as a failover strategy to handle failures.

Instead of building aggregation into the gateway, consider placing an aggregation service behind
the gateway. Request aggregation will likely have different resource requirements than other
services in the gateway and may impact the gateway’s routing and offloading functionality.

Issues and considerations
•
•
•

•

•

•

•

•
•
•

•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/bulkhead
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry

179

Use this pattern when:

A client needs to communicate with multiple backend services to perform an operation.
The client may use networks with significant latency, such as cellular networks.

When to use this pattern

•

•

•

•
This pattern may not be suitable when:

You want to reduce the number of calls between a client and a single service across multiple
operations. In that scenario, it may be better to add a batch operation to the service.

The client or application is located near the backend services and latency is not a significant
factor.

Example
The following example illustrates how to create a simple a gateway aggregation NGINX service using
Lua.

worker_processes 4;

events {
 worker_connections 1024;
}

http {
 server {
 listen 80;

 location = /batch {
 content_by_lua ‘
 ngx.req.read_body()

 -- read json body content
 local cjson = require “cjson”
 local batch = cjson.decode(ngx.req.get_body_data())[“batch”]

 -- create capture_multi table
 local requests = {}
 for i, item in ipairs(batch) do
 table.insert(requests, {item.relative_url, { method = ngx.HTTP_GET}})
 end

 -- execute batch requests in parallel
 local results = {}
 local resps = { ngx.location.capture_multi(requests) }
 for i, res in ipairs(resps) do
 table.insert(results, {status = res.status, body = cjson.decode(res.body), header =
res.header})
 end

 ngx.say(cjson.encode({results = results}))
 ‘;
 }

 location = /service1 {
 default_type application/json;
 echo ‘{“attr1”:”val1”}’;
 }

 location = /service2 {
 default_type application/json;
 echo ‘{“attr2”:”val2”}’;
 }
 }
}

CHAPTER 6 | Catalog of patterns

180

Related guidance

Backends for Frontends pattern
Gateway Offloading pattern
Gateway Routing pattern

•
•
•

Some features are commonly used across multiple services, and these features require configuration,
management, and maintenance. A shared or specialized service that is distributed with every
application deployment increases the administrative overhead and increases the likelihood of
deployment error. Any updates to a shared feature must be deployed across all services that share
that feature.

Properly handling security issues (token validation, encryption, SSL certificate management) and
other complex tasks can require team members to have highly specialized skills. For example, a
certificate needed by an application must be configured and deployed on all application instances.
With each new deployment, the certificate must be managed to ensure that it does not expire. Any
common certificate that is due to expire must be updated, tested, and verified on every application
deployment.

Other common services such as authentication, authorization, logging, monitoring, or throttling can
be difficult to implement and manage across a large number of deployments. It may be better to
consolidate this type of functionality, in order to reduce overhead and the chance of errors.

Offload some features into an API gateway, particularly cross-cutting concerns such as certificate
management, authentication, SSL termination, monitoring, protocol translation, or throttling.
Offload some features into an API gateway, particularly cross-cutting concerns such as certificate
management, authentication, SSL termination, monitoring, protocol translation, or throttling.

The following diagram shows an API gateway that terminates inbound SSL connections. It requests
data on behalf of the original requestor from any HTTP server upstream of the API gateway.

Context and problem

Solution

Gateway Offloading pattern
Offload shared or specialized service functionality to a gateway proxy. This pattern can simplify
application development by moving shared service functionality, such as the use of SSL certificates,
from other parts of the application into the gateway.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-offloading
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-routing

181

Benefits of this pattern include:
Simplify the development of services by removing the need to distribute and maintain
supporting resources, such as web server certificates and configuration for secure websites.
Simpler configuration results in easier management and scalability and makes service upgrades
simpler.

Allow dedicated teams to implement features that require specialized expertise, such as security.
This allows your core team to focus on the application functionality, leaving these specialized but
cross-cutting concerns to the relevant experts.

Provide some consistency for request and response logging and monitoring. Even if a service
is not correctly instrumented, the gateway can be configured to ensure a minimum level of
monitoring and logging.

Ensure the API gateway is highly available and resilient to failure. Avoid single points of failure by
running multiple instances of your API gateway.

Ensure the gateway is designed for the capacity and scaling requirements of your application
and endpoints. Make sure the gateway does not become a bottleneck for the application and is
sufficiently scalable.

Only offload features that are used by the entire application, such as security or data transfer.

Business logic should never be offloaded to the API gateway.

If you need to track transactions, consider generating correlation IDs for logging purposes.

Issues and considerations

•

•

•

•

•

•

•
•

•
•

Use this pattern when:
An application deployment has a shared concern such as SSL certificates or encryption.

A feature that is common across application deployments that may have different resource
requirements, such as memory resources, storage capacity or network connections.

When to use this pattern

CHAPTER 6 | Catalog of patterns

182

You wish to move the responsibility for issues such as network security, throttling, or other
network boundary concerns to a more specialized team.

This pattern may not be suitable if it introduces coupling across services.

•

Using Nginx as the SSL offload appliance, the following configuration terminates an inbound SSL
connection and distributes the connection to one of three upstream HTTP servers.

Example

upstream iis {
 server 10.3.0.10 max_fails=3 fail_timeout=15s;
 server 10.3.0.20 max_fails=3 fail_timeout=15s;
 server 10.3.0.30 max_fails=3 fail_timeout=15s;
}

server {
 listen 443;
 ssl on;
 ssl_certificate /etc/nginx/ssl/domain.cer;
 ssl_certificate_key /etc/nginx/ssl/domain.key;

 location / {
 set $targ iis;
 proxy_pass http://$targ;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 }
}

Backends for Frontends pattern
Gateway Aggregation pattern
Gateway Routing pattern

Related guidance

When a client needs to consume multiple services, setting up a separate endpoint for each service
and having the client manage each endpoint can be challenging. For example, an e-commerce
application might provide services such as search, reviews, cart, checkout, and order history. Each
service has a different API that the client must interact with, and the client must know about each
endpoint in order to connect to the services. If an is changed or updated, the client must be updated
as well. If you refactor a service into two or more separate services, the code must change in both the
service and the client.

Context and problem

Gateway Routing pattern
Route requests to multiple services using a single endpoint. This pattern is useful when you wish
to expose multiple services on a single endpoint and route to the appropriate service based on the
request.

•
•
•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-routing

183

Place a gateway in front of a set of applications, services, or deployments. Use application Layer 7
routing to route the request to the appropriate instances.

With this pattern, the client application only needs to know about and communicate with a single
endpoint. If a service is consolidated or decomposed, the client does not necessarily require
updating. It can continue making requests to the gateway, and only the routing changes.

A gateway also lets you abstract backend services from the clients, allowing you to keep client calls
simple while enabling changes in the backend services behind the gateway. Client calls can be routed
to whatever service or services need to handle the expected client behavior, allowing you to add,
split, and reorganize services behind the gateway without changing the client.

Solution

This pattern can also help with deployment, by allowing you to manage how updates are rolled out
to users. When a new version of your service is deployed, it can be deployed in parallel with the
existing version. Routing let you control what version of the service is presented to the clients, giving
you the flexibility to use various release strategies, whether incremental, parallel, or complete rollouts
of updates. Any issues discovered after the new service is deployed can be quickly reverted by
making a configuration change at the gateway, without affecting clients.

The gateway service may introduce a single point of failure. Ensure it is properly designed to
meet your availability requirements. Consider resiliency and fault tolerance capabilities when
implementing.

The gateway service may introduce a bottleneck. Ensure the gateway has adequate performance
to handle load and can easily scale in line with your growth expectations.

Issues and considerations

•

•

CHAPTER 6 | Catalog of patterns

184

Perform load testing against the gateway to ensure you don’t introduce cascading failures for
services.

Gateway routing is level 7. It can be based on IP, port, header, or URL.

•

•
•

•

•

Use this pattern when:
A client needs to consume multiple services that can be accessed behind a gateway.

You wish to simplify client applications by using a single endpoint.

You need to route requests from externally addressable endpoints to internal virtual endpoints,
such as exposing ports on a VM to cluster virtual IP addresses.

Using Nginx as the router, the following is a simple example configuration file for a server that routes
requests for applications residing on different virtual directories to different machines at the back
end.

When to use this pattern

Example

This pattern may not be suitable when you have a simple application that uses only one or two
services.

server {
 listen 80;
 server_name domain.com;

 location /app1 {
 proxy_pass http://10.0.3.10:80;
 }

 location /app2 {
 proxy_pass http://10.0.3.20:80;
 }

 location /app3 {
 proxy_pass http://10.0.3.30:80;
 }
}

Backends for Frontends pattern
Gateway Aggregation pattern
Gateway Offloading pattern

Related guidance
•
•
•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-aggregation
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-offloading

185

It’s a good practice, and often a business requirement, to monitor web applications and back-end
services, to ensure they’re available and performing correctly. However, it’s more difficult to monitor
services running in the cloud than it is to monitor on-premises services. For example, you don’t have
full control of the hosting environment, and the services typically depend on other services provided
by platform vendors and others.

There are many factors that affect cloud-hosted applications such as network latency, the
performance and availability of the underlying compute and storage systems, and the network
bandwidth between them. The service can fail entirely or partially due to any of these factors.
Therefore, you must verify at regular intervals that the service is performing correctly to ensure the
required level of availability, which might be part of your service level agreement (SLA).

Implement health monitoring by sending requests to an endpoint on the application. The application
should perform the necessary checks, and return an indication of its status.

A health monitoring check typically combines two factors:

The checks (if any) performed by the application or service in response to the request to the
health verification endpoint.

Analysis of the results by the tool or framework that performs the health verification check.

The response code indicates the status of the application and, optionally, any components or services
it uses. The latency or response time check is performed by the monitoring tool or framework. The
figure provides an overview of the pattern.

Context and problem

Solution

Health Endpoint Monitoring pattern
Implement functional checks in an application that external tools can access through exposed
endpoints at regular intervals. This can help to verify that applications and services are performing
correctly.

•

•

CHAPTER 6 | Catalog of patterns

186

Other checks that might be carried out by the health monitoring code in the application include:
Checking cloud storage or a database for availability and response time.

Checking other resources or services located in the application, or located elsewhere but used by
the application.

Services and tools are available that monitor web applications by submitting a request to a
configurable set of endpoints, and evaluating the results against a set of configurable rules. It’s
relatively easy to create a service endpoint whose sole purpose is to perform some functional tests
on the system.

Typical checks that can be performed by the monitoring tools include:

Validating the response code. For example, an HTTP response of 200 (OK) indicates that the
application responded without error. The monitoring system might also check for other response
codes to give more comprehensive results.

Checking the content of the response to detect errors, even when a 200 (OK) status code is
returned. This can detect errors that affect only a section of the returned web page or service
response. For example, checking the title of a page or looking for a specific phrase that indicates
the correct page was returned.

Measuring the response time, which indicates a combination of the network latency and the time
that the application took to execute the request. An increasing value can indicate an emerging
problem with the application or network.

Checking resources or services located outside the application, such as a content delivery
network used by the application to deliver content from global caches.

Checking for expiration of SSL certificates.

Measuring the response time of a DNS lookup for the URL of the application to measure DNS
latency and DNS failures.

Validating the URL returned by the DNS lookup to ensure correct entries. This can help to avoid
malicious request redirection through a successful attack on the DNS server.

It’s also useful, where possible, to run these checks from different on-premises or hosted locations to
measure and compare response times. Ideally you should monitor applications from locations that
are close to customers to get an accurate view of the performance from each location. In addition to
providing a more robust checking mechanism, the results can help you decide on the deployment
location for the application—and whether to deploy it in more than one datacenter.

Tests should also be run against all the service instances that customers use to ensure the application
is working correctly for all customers. For example, if customer storage is spread across more than
one storage account, the monitoring process should check all of these.

•
•

•

•

•

•

•
•

•

Issues and considerations
Consider the following points when deciding how to implement this pattern:
How to validate the response. For example, is just a single 200 (OK) status code sufficient to verify
the application is working correctly? While this provides the most basic measure of application
availability, and is the minimum implementation of this pattern, it provides little information about
the operations, trends, and possible upcoming issues in the application.

CHAPTER 6 | Catalog of patterns

187

Make sure that the application correctly returns a 200 (OK) only when the target resource is found
and processed. In some scenarios, such as when using a master page to host the target web page,
the server sends back a 200 (OK) status code instead of a 404 (Not Found) code, even when the
target content page was not found.

The number of endpoints to expose for an application. One approach is to expose at least one
endpoint for the core services that the application uses and another for lower priority services,
allowing different levels of importance to be assigned to each monitoring result. Also consider
exposing more endpoints, such as one for each core service, for additional monitoring granularity.
For example, a health verification check might check the database, storage, and an external
geocoding service that an application uses, with each requiring a different level of uptime and
response time. The application could still be healthy if the geocoding service, or some other
background task, is unavailable for a few minutes.

Whether to use the same endpoint for monitoring as is used for general access, but to a specific path
designed for health verification checks, for example, /HealthCheck/{GUID}/ on the general access
endpoint. This allows some functional tests in the application to be run by the monitoring tools, such
as adding a new user registration, signing in, and placing a test order, while also verifying that the
general access endpoint is available.

The type of information to collect in the service in response to monitoring requests, and how to
return this information. Most existing tools and frameworks look only at the HTTP status code that
the endpoint returns. To return and validate additional information, you might have to create a
custom monitoring utility or service.

How much information to collect. Performing excessive processing during the check can overload
the application and impact other users. The time it takes might exceed the timeout of the monitoring
system so it marks the application as unavailable. Most applications include instrumentation such as
error handlers and performance counters that log performance and detailed error information, this
might be sufficient instead of returning additional information from a health verification check.

Caching the endpoint status. It could be expensive to run the health check too frequently. If the
health status is reported through a dashboard, for example, you don’t want every request from the
dashboard to trigger a health check. Instead, periodically check the system health and cache the
status. Expose an endpoint that returns the cached status.

How to configure security for the monitoring endpoints to protect them from public access, which
might expose the application to malicious attacks, risk the exposure of sensitive information, or
attract denial of service (DoS) attacks. Typically this should be done in the application configuration
so that it can be updated easily without restarting the application. Consider using one or more of the
following techniques:

Secure the endpoint by requiring authentication. You can do this by using an authentication
security key in the request header or by passing credentials with the request, provided that the
monitoring service or tool supports authentication.

• Use an obscure or hidden endpoint. For example, expose the endpoint on a different
IP address to that used by the default application URL, configure the endpoint on a
standard HTTP port, and/or use a complex path to the test page. You can usually specify
additional endpoint addresses and ports in the application configuration, and add
entries for these endpoints to the DNS server if required to avoid having to specify the IP
address directly.

• Expose a method on an endpoint that accepts a parameter such as a key value or an

•

CHAPTER 6 | Catalog of patterns

188

operation mode value. Depending on the value supplied for this parameter, when a
request is received the code can perform a specific test or set of tests, or return a 404
(Not Found) error if the parameter value isn’t recognized. The recognized parameter
values could be set in the application configuration.

• DoS attacks are likely to have less impact on a separate endpoint that performs basic
functional tests without compromising the operation of the application. Ideally, avoid
using a test that might expose sensitive information. If you must return information that
might be useful to an attacker, consider how you’ll protect the endpoint and the data
from unauthorized access. In this case just relying on obscurity isn’t enough. You should
also consider using an HTTPS connection and encrypting any sensitive data, although
this will increase the load on the server.

How to access an endpoint that’s secured using authentication. Not all tools and frameworks can
be configured to include credentials with the health verification request. For example, Microsoft
Azure built-in health verification features can’t provide authentication credentials. Some third-
party alternatives are Pingdom, Panopta, NewRelic, and Statuscake.

How to ensure that the monitoring agent is performing correctly. One approach is to expose an
endpoint that simply returns a value from the application configuration or a random value that
can be used to test the agent.

Also ensure that the monitoring system performs checks on itself, such as a self-test and built-in test,
to avoid it issuing false positive results.

•

•

•
•

•

•

This pattern is useful for:
Monitoring websites and web applications to verify availability.

Monitoring websites and web applications to check for correct operation.

Monitoring middle-tier or shared services to detect and isolate a failure that could disrupt other
applications.

Complementing existing instrumentation in the application, such as performance counters and
error handlers. Health verification checking doesn’t replace the requirement for logging and
auditing in the application. Instrumentation can provide valuable information for an existing
framework that monitors counters and error logs to detect failures or other issues. However, it
can’t provide information if the application is unavailable.

When to use this pattern

The following code examples, taken from the HealthCheckController class (a sample that
demonstrates this pattern is available on GitHub), demonstrates exposing an endpoint for performing
a range of health checks.

The CoreServices method, shown below in C#, performs a series of checks on services used in the
application. If all of the tests run without error, the method returns a 200 (OK) status code. If any of
the tests raises an exception, the method returns a 500 (Internal Error) status code. The method could
optionally return additional information when an error occurs, if the monitoring tool or framework is
able to make use of it.

Example

CHAPTER 6 | Catalog of patterns

189

public ActionResult CoreServices()
{
 try
 {
 // Run a simple check to ensure the database is available.
 DataStore.Instance.CoreHealthCheck();

 // Run a simple check on our external service.
 MyExternalService.Instance.CoreHealthCheck();
 }
 catch (Exception ex)
 {
 Trace.TraceError(“Exception in basic health check: {0}”, ex.Message);

 // This can optionally return different status codes based on the exception.
 // Optionally it could return more details about the exception.
 // The additional information could be used by administrators who access the
 // endpoint with a browser, or using a ping utility that can display the
 // additional information.
 return new HttpStatusCodeResult((int)HttpStatusCode.InternalServerError);
 }
 return new HttpStatusCodeResult((int)HttpStatusCode.OK);
}

public ActionResult ObscurePath(string id)
{
 // The id could be used as a simple way to obscure or hide the endpoint.
 // The id to match could be retrieved from configuration and, if matched,
 // perform a specific set of tests and return the result. If not matched it
 // could return a 404 (Not Found) status.

 // The obscure path can be set through configuration to hide the endpoint.
 var hiddenPathKey = CloudConfigurationManager.GetSetting(“Test.ObscurePath”);

 // If the value passed does not match that in configuration, return 404 (Not Found).
 if (!string.Equals(id, hiddenPathKey))
 {
 return new HttpStatusCodeResult((int)HttpStatusCode.NotFound);
 }

 // Else continue and run the tests...
 // Return results from the core services test.
 return this.CoreServices();
}

public ActionResult TestResponseFromConfig()
{
 // Health check that returns a response code set in configuration for testing.
 var returnStatusCodeSetting = CloudConfigurationManager.GetSetting(
 “Test.ReturnStatusCode”);

 int returnStatusCode;

 if (!int.TryParse(returnStatusCodeSetting, out returnStatusCode))
 {
 returnStatusCode = (int)HttpStatusCode.OK;
 }

 return new HttpStatusCodeResult(returnStatusCode);
}

The ObscurePath method shows how you can read a path from the application configuration and use
it as the endpoint for tests. This example, in C#, also shows how you can accept an ID as a parameter
and use it to check for valid requests.

The TestResponseFromConfig method shows how you can expose an endpoint that performs a check
for a specified configuration setting value.

CHAPTER 6 | Catalog of patterns

190

Some options for monitoring endpoints in Azure applications are:

Use the built-in monitoring features of Azure.

Use a third-party service or a framework such as Microsoft System Center Operations Manager.

Create a custom utility or a service that runs on your own or on a hosted server.

Monitoring endpoints in Azure hosted applications

•
•
•

Even though Azure provides a reasonably comprehensive set of monitoring options, you can use
additional services and tools to provide extra information. Azure Management Services provides a
built-in monitoring mechanism for alert rules. The alerts section of the management services page in
the Azure portal allows you to configure up to ten alert rules per subscription for your services. These
rules specify a condition and a threshold value for a service such as CPU load, or the number of
requests or errors per second, and the service can automatically send email notifications to addresses
you define in each rule.

The conditions you can monitor vary depending on the hosting mechanism you choose for your
application (such as Web Sites, Cloud Services, Virtual Machines, or Mobile Services), but all of these
include the ability to create an alert rule that uses a web endpoint you specify in the settings for your
service. This endpoint should respond in a timely way so that the alert system can detect that the
application is operating correctly.

Read more information about creating alert notifications.

If you host your application in Azure Cloud Services web and worker roles or Virtual Machines, you
can take advantage of one of the built-in services in Azure called Traffic Manager. Traffic Manager is
a routing and load-balancing service that can distribute requests to specific instances of your Cloud
Services hosted application based on a range of rules and settings.

In addition to routing requests, Traffic Manager pings a URL, port, and relative path that you specify
on a regular basis to determine which instances of the application defined in its rules are active and
are responding to requests. If it detects a status code 200 (OK), it marks the application as available.
Any other status code causes Traffic Manager to mark the application as offline. You can view the
status in the Traffic Manager console, and configure the rule to reroute requests to other instances of
the application that are responding.

However, Traffic Manager will only wait ten seconds to receive a response from the monitoring URL.
Therefore, you should ensure that your health verification code executes in this time, allowing for
network latency for the round trip from Traffic Manager to your application and back again.

Read more information about using Traffic Manager to monitor your applications. Traffic Manager is
also discussed in Multiple Datacenter Deployment Guidance.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/insights-alerts-portal
https://docs.microsoft.com/en-us/azure/traffic-manager/
https://msdn.microsoft.com/library/dn589779.aspx

191

The following guidance can be useful when implementing this pattern:
Instrumentation and Telemetry Guidance. Checking the health of services and components is
typically done by probing, but it’s also useful to have information in place to monitor application
performance and detect events that occur at runtime. This data can be transmitted back to
monitoring tools as additional information for health monitoring. Instrumentation and Telemetry
Guidance explores gathering remote diagnostics information that’s collected by instrumentation
in applications.

Receiving alert notifications.

This pattern includes a downloadable sample application.

Related guidance

•

•
•

Many data stores organize the data for a collection of entities using the primary key. An application
can use this key to locate and retrieve data. The figure shows an example of a data store holding
customer information. The primary key is the Customer ID. The figure shows customer information
organized by the primary key (Customer ID).

Context and problem

Index Table pattern
Create indexes over the fields in data stores that are frequently referenced by queries. This pattern
can improve query performance by allowing applications to more quickly locate the data to retrieve
from a data store.

While the primary key is valuable for queries that fetch data based on the value of this key, an
application might not be able to use the primary key if it needs to retrieve data based on some other
field. In the customers example, an application can’t use the Customer ID primary key to retrieve
customers if it queries data solely by referencing the value of some other attribute, such as the town
in which the customer is located. To perform a query such as this, the application might have to fetch
and examine every customer record, which could be a slow process.

Many relational database management systems support secondary indexes. A secondary index is a
separate data structure that’s organized by one or more nonprimary (secondary) key fields, and it
indicates where the data for each indexed value is stored. The items in a secondary index are typically

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/insights-alerts-portal
https://github.com/mspnp/cloud-design-patterns/tree/master/health-endpoint-monitoring

192

If the data store doesn’t support secondary indexes, you can emulate them manually by creating
your own index tables. An index table organizes the data by a specified key. Three strategies are
commonly used for structuring an index table, depending on the number of secondary indexes that
are required and the nature of the queries that an application performs.

The first strategy is to duplicate the data in each index table but organize it by different keys
(complete denormalization). The next figure shows index tables that organize the same customer
information by Town and LastName.

Solution

sorted by the value of the secondary keys to enable fast lookup of data. These indexes are usually
maintained automatically by the database management system.

You can create as many secondary indexes as you need to support the different queries that your
application performs. For example, in a Customers table in a relational database where the Customer
ID is the primary key, it’s beneficial to add a secondary index over the town field if the application
frequently looks up customers by the town where they reside.

However, although secondary indexes are common in relational systems, most NoSQL data stores
used by cloud applications don’t provide an equivalent feature.

This strategy is appropriate if the data is relatively static compared to the number of times it’s queried
using each key. If the data is more dynamic, the processing overhead of maintaining each index
table becomes too large for this approach to be useful. Also, if the volume of data is very large, the
amount of space required to store the duplicate data is significant.

The second strategy is to create normalized index tables organized by different keys and reference
the original data by using the primary key rather than duplicating it, as shown in the following figure.
The original data is called a fact table.

CHAPTER 6 | Catalog of patterns

193

This technique saves space and reduces the overhead of maintaining duplicate data. The
disadvantage is that an application has to perform two lookup operations to find data using a
secondary key. It has to find the primary key for the data in the index table, and then use the primary
key to look up the data in the fact table.

The third strategy is to create partially normalized index tables organized by different keys that
duplicate frequently retrieved fields. Reference the fact table to access less frequently accessed fields.
The next figure shows how commonly accessed data is duplicated in each index table.

With this strategy, you can strike a balance between the first two approaches. The data for common
queries can be retrieved quickly by using a single lookup, while the space and maintenance overhead
isn’t as significant as duplicating the entire data set.

If an application frequently queries data by specifying a combination of values (for example, “Find all
customers that live in Redmond and that have a last name of Smith”), you could implement the keys
to the items in the index table as a concatenation of the Town attribute and the LastName attribute.
The next figure shows an index table based on composite keys. The keys are sorted by Town, and
then by LastName for records that have the same value for Town.

CHAPTER 6 | Catalog of patterns

194

Index tables can speed up query operations over sharded data, and are especially useful where the
shard key is hashed. The next figure shows an example where the shard key is a hash of the Customer
ID. The index table can organize data by the nonhashed value (Town and LastName), and provide
the hashed shard key as the lookup data. This can save the application from repeatedly calculating
hash keys (an expensive operation) if it needs to retrieve data that falls within a range, or it needs to
fetch data in order of the nonhashed key. For example, a query such as “Find all customers that live
in Redmond” can be quickly resolved by locating the matching items in the index table, where they’re
all stored in a contiguous block. Then, follow the references to the customer data using the shard
keys stored in the index table.

Consider the following points when deciding how to implement this pattern:
The overhead of maintaining secondary indexes can be significant. You must analyze and
understand the queries that your application uses. Only create index tables when they’re likely
to be used regularly. Don’t create speculative index tables to support queries that an application
doesn’t perform, or performs only occasionally.

Issues and considerations

•

CHAPTER 6 | Catalog of patterns

195

Duplicating data in an index table can add significant overhead in storage costs and the effort
required to maintain multiple copies of data.

Implementing an index table as a normalized structure that references the original data requires
an application to perform two lookup operations to find data. The first operation searches the
index table to retrieve the primary key, and the second uses the primary key to fetch the data.

If a system incorporates a number of index tables over very large data sets, it can be difficult
to maintain consistency between index tables and the original data. It might be possible to
design the application around the eventual consistency model. For example, to insert, update,
or delete data, an application could post a message to a queue and let a separate task perform
the operation and maintain the index tables that reference this data asynchronously. For more
information about implementing eventual consistency, see the Data Consistency Primer.

Microsoft Azure storage tables support transactional updates for changes made to data held in
the same partition (referred to as entity group transactions). If you can store the data for a fact
table and one or more index tables in the same partition, you can use this feature to help ensure
consistency.

Index tables might themselves be partitioned or sharded.

•

•

•

•

When to use this pattern
Use this pattern to improve query performance when an application frequently needs to retrieve data
by using a key other than the primary (or shard) key.

This pattern might not be useful when:

Data is volatile. An index table can become out of date very quickly, making it ineffective or
making the overhead of maintaining the index table greater than any savings made by using it.

A field selected as the secondary key for an index table is nondiscriminating and can only have a
small set of values (for example, gender).

The balance of the data values for a field selected as the secondary key for an index table are
highly skewed. For example, if 90% of the records contain the same value in a field, then creating
and maintaining an index table to look up data based on this field might create more overhead
than scanning sequentially through the data. However, if queries very frequently target values
that lie in the remaining 10%, this index can be useful. You should understand the queries that
your application is performing, and how frequently they’re performed.

•

•

•

Azure storage tables provide a highly scalable key/value data store for applications running in the
cloud. Applications store and retrieve data values by specifying a key. The data values can contain
multiple fields, but the structure of a data item is opaque to table storage, which simply handles a
data item as an array of bytes.

Azure storage tables also support sharding. The sharding key includes two elements, a partition
key and a row key. Items that have the same partition key are stored in the same partition (shard),
and the items are stored in row key order within a shard. Table storage is optimized for performing
queries that fetch data falling within a contiguous range of row key values within a partition. If you’re

Example

CHAPTER 6 | Catalog of patterns

196

building cloud applications that store information in Azure tables, you should structure your data
with this feature in mind.

For example, consider an application that stores information about movies. The application
frequently queries movies by genre (action, documentary, historical, comedy, drama, and so on). You
could create an Azure table with partitions for each genre by using the genre as the partition key, and
specifying the movie name as the row key, as shown in the next figure.

This approach is less effective if the application also needs to query movies by starring actor. In this
case, you can create a separate Azure table that acts as an index table. The partition key is the actor
and the row key is the movie name. The data for each actor will be stored in separate partitions. If a
movie stars more than one actor, the same movie will occur in multiple partitions.

You can duplicate the movie data in the values held by each partition by adopting the first approach
described in the Solution section above. However, it’s likely that each movie will be replicated
several times (once for each actor), so it might be more efficient to partially denormalize the data to
support the most common queries (such as the names of the other actors) and enable an application
to retrieve any remaining details by including the partition key necessary to find the complete
information in the genre partitions. This approach is described by the third option in the Solution
section. The next figure shows this approach.

CHAPTER 6 | Catalog of patterns

197

The following patterns and guidance might also be relevant when implementing this pattern:
Data Consistency Primer. An index table must be maintained as the data that it indexes
changes. In the cloud, it might not be possible or appropriate to perform operations that update
an index as part of the same transaction that modifies the data. In that case, an eventually
consistent approach is more suitable. Provides information on the issues surrounding eventual
consistency.

Sharding pattern. The Index Table pattern is frequently used in conjunction with data
partitioned by using shards. The Sharding pattern provides more information on how to divide a
data store into a set of shards.

Materialized View pattern. Instead of indexing data to support queries that summarize data, it
might be more appropriate to create a materialized view of the data. Describes how to support
efficient summary queries by generating prepopulated views over data.

Related patterns and guidance

•

•

•

A typical cloud application has many tasks acting in a coordinated manner. These tasks could all
be instances running the same code and requiring access to the same resources, or they might be
working together in parallel to perform the individual parts of a complex calculation.

Context and problem

Leader Election pattern
Coordinate the actions performed by a collection of collaborating instances in a distributed
application by electing one instance as the leader that assumes responsibility for managing the
others. This can help to ensure that instances don’t conflict with each other, cause contention for
shared resources, or inadvertently interfere with the work that other instances are performing.

CHAPTER 6 | Catalog of patterns

198

The task instances might run separately for much of the time, but it might also be necessary to
coordinate the actions of each instance to ensure that they don’t conflict, cause contention for shared
resources, or accidentally interfere with the work that other task instances are performing.

For example:

In a cloud-based system that implements horizontal scaling, multiple instances of the same task
could be running at the same time with each instance serving a different user. If these instances
write to a shared resource, it’s necessary to coordinate their actions to prevent each instance
from overwriting the changes made by the others.

If the tasks are performing individual elements of a complex calculation in parallel, the results
need to be aggregated when they all complete.

The task instances are all peers, so there isn’t a natural leader that can act as the coordinator or
aggregator.

•

•

•
•

•
•

•

Solution
A single task instance should be elected to act as the leader, and this instance should coordinate
the actions of the other subordinate task instances. If all of the task instances are running the same
code, they are each capable of acting as the leader. Therefore, the election process must be managed
carefully to prevent two or more instances taking over the leader role at the same time.

The system must provide a robust mechanism for selecting the leader. This method has to cope with
events such as network outages or process failures. In many solutions, the subordinate task instances
monitor the leader through some type of heartbeat method, or by polling. If the designated leader
terminates unexpectedly, or a network failure makes the leader unavailable to the subordinate task
instances, it’s necessary for them to elect a new leader.

There are several strategies for electing a leader among a set of tasks in a distributed environment,
including:

Selecting the task instance with the lowest-ranked instance or process ID.

Racing to acquire a shared, distributed mutex. The first task instance that acquires the mutex
is the leader. However, the system must ensure that, if the leader terminates or becomes
disconnected from the rest of the system, the mutex is released to allow another task instance to
become the leader.

Implementing one of the common leader election algorithms such as the Bully Algorithm or the
Ring Algorithm. These algorithms assume that each candidate in the election has a unique ID,
and that it can communicate with the other candidates reliably.

Issues and considerations
Consider the following points when deciding how to implement this pattern:

The process of electing a leader should be resilient to transient and persistent failures.

It must be possible to detect when the leader has failed or has become otherwise unavailable

CHAPTER 6 | Catalog of patterns

199

(such as due to a communications failure). How quickly detection is needed is system dependent.
Some systems might be able to function for a short time without a leader, during which a
transient fault might be fixed. In other cases, it might be necessary to detect leader failure
immediately and trigger a new election.

In a system that implements horizontal autoscaling, the leader could be terminated if the system
scales back and shuts down some of the computing resources.

Using a shared, distributed mutex introduces a dependency on the external service that provides
the mutex. The service constitutes a single point of failure. If it becomes unavailable for any
reason, the system won’t be able to elect a leader.

Using a single dedicated process as the leader is a straightforward approach. However, if the
process fails there could be a significant delay while it’s restarted. The resulting latency can
affect the performance and response times of other processes if they’re waiting for the leader to
coordinate an operation.

Implementing one of the leader election algorithms manually provides the greatest flexibility for
tuning and optimizing the code.

•

•

•

•

•

•

•

Use this pattern when the tasks in a distributed application, such as a cloud-hosted solution, need
careful coordination and there’s no natural leader.

Avoid making the leader a bottleneck in the system. The purpose of the leader is to coordinate the
work of the subordinate tasks, and it doesn’t necessarily have to participate in this work itself—
although it should be able to do so if the task isn’t elected as the leader.

This pattern might not be useful if:

There’s a natural leader or dedicated process that can always act as the leader. For example, it
might be possible to implement a singleton process that coordinates thea task instances. If this
process fails or becomes unhealthy, the system can shut it down and restart it.

The coordination between tasks can be achieved using a more lightweight method. For example,
if several task instances simply need coordinated access to a shared resource, a better solution is
to use optimistic or pessimistic locking to control access.

A third-party solution is more appropriate. For example, the Microsoft Azure HDInsight service
(based on Apache Hadoop) uses the services provided by Apache Zookeeper to coordinate the
map and reduce tasks that collect and summarize data.

When to use this pattern

Example
The DistributedMutex project in the LeaderElection solution (a sample that demonstrates this pattern
is available on GitHub) shows how to use a lease on an Azure Storage blob to provide a mechanism
for implementing a shared, distributed mutex. This mutex can be used to elect a leader among a
group of role instances in an Azure cloud service. The first role instance to acquire the lease is elected
the leader, and remains the leader until it releases the lease or isn’t able to renew the lease. Other
role instances can continue to monitor the blob lease in case the leader is no longer available.

CHAPTER 6 | Catalog of patterns

200

A blob lease is an exclusive write lock over a blob. A single blob can be the subject of only one lease
at any point in time. A role instance can request a lease over a specified blob, and it’ll be granted the
lease if no other role instance holds a lease over the same blob. Otherwise the request will throw an
exception.

To avoid a faulted role instance retaining the lease indefinitely, specify a lifetime for the lease. When
this expires, the lease becomes available. However, while a role instance holds the lease it can request
that the lease is renewed, and it’ll be granted the lease for a further period of time. The role instance
can continually repeat this process if it wants to retain the lease. For more information on how to
lease a blob, see Lease Blob (REST API).

The BlobDistributedMutex class in the C# example below contains the RunTaskWhenMutexAquired
method that enables a role instance to attempt to acquire a lease over a specified blob. The details of
the blob (the name, container, and storage account) are passed to the constructor in a BlobSettings
object when the BlobDistributedMutex object is created (this object is a simple struct that is included
in the sample code). The constructor also accepts a Task that references the code that the role
instance should run if it successfully acquires the lease over the blob and is elected the leader. Note
that the code that handles the low-level details of acquiring the lease is implemented in a separate
helper class named BlobLeaseManager.

public class BlobDistributedMutex
{
 ...
 private readonly BlobSettings blobSettings;
 private readonly Func<CancellationToken, Task> taskToRunWhenLeaseAcquired;
 ...

 public BlobDistributedMutex(BlobSettings blobSettings,
 Func<CancellationToken, Task> taskToRunWhenLeaseAquired)
 {
 this.blobSettings = blobSettings;
 this.taskToRunWhenLeaseAquired = taskToRunWhenLeaseAquired;
 }

 public async Task RunTaskWhenMutexAcquired(CancellationToken token)
 {
 var leaseManager = new BlobLeaseManager(blobSettings);
 await this.RunTaskWhenBlobLeaseAcquired(leaseManager, token);
 }
 ...

The RunTaskWhenMutexAquired method in the code sample above invokes the
RunTaskWhenBlobLeaseAcquired method shown in the following code sample to actually
acquire the lease. The RunTaskWhenBlobLeaseAcquired method runs asynchronously. If the
lease is successfully acquired, the role instance has been elected the leader. The purpose of the
taskToRunWhenLeaseAcquired delegate is to perform the work that coordinates the other role
instances. If the lease isn’t acquired, another role instance has been elected as the leader and the
current role instance remains a subordinate. Note that the TryAcquireLeaseOrWait method is a helper
method that uses the BlobLeaseManager object to acquire the lease.

CHAPTER 6 | Catalog of patterns

201

private async Task RunTaskWhenBlobLeaseAcquired(
 BlobLeaseManager leaseManager, CancellationToken token)
 {
 while (!token.IsCancellationRequested)
 {
 // Try to acquire the blob lease.
 // Otherwise wait for a short time before trying again.
 string leaseId = await this.TryAquireLeaseOrWait(leaseManager, token);

 if (!string.IsNullOrEmpty(leaseId))
 {
 // Create a new linked cancellation token source so that if either the
 // original token is canceled or the lease can’t be renewed, the
 // leader task can be canceled.
 using (var leaseCts =
 CancellationTokenSource.CreateLinkedTokenSource(new[] { token }))
 {
 // Run the leader task.
 var leaderTask = this.taskToRunWhenLeaseAquired.Invoke(leaseCts.Token);
 ...
 }
 }
 }
 ...
 }

private async Task RunTaskWhenBlobLeaseAcquired(
 BlobLeaseManager leaseManager, CancellationToken token)
 {
 while (...)
 {
 ...
 if (...)
 {
 ...
 using (var leaseCts = ...)
 {
 ...
 // Keep renewing the lease in regular intervals.
 // If the lease can’t be renewed, then the task completes.
 var renewLeaseTask =
 this.KeepRenewingLease(leaseManager, leaseId, leaseCts.Token);

 // When any task completes (either the leader task itself or when it
 // couldn’t renew the lease) then cancel the other task.
 await CancelAllWhenAnyCompletes(leaderTask, renewLeaseTask, leaseCts);
 }
 }
 }
 }
 ...
}

The task started by the leader also runs asynchronously. While this task is running, the
RunTaskWhenBlobLeaseAquired method shown in the following code sample periodically attempts
to renew the lease. This helps to ensure that the role instance remains the leader. In the sample
solution, the delay between renewal requests is less than the time specified for the duration of the
lease in order to prevent another role instance from being elected the leader. If the renewal fails for
any reason, the task is canceled.

If the lease fails to be renewed or the task is canceled (possibly as a result of the role instance
shutting down), the lease is released. At this point, this or another role instance might be elected as
the leader. The code extract below shows this part of the process.

CHAPTER 6 | Catalog of patterns

202

The KeepRenewingLease method is another helper method that uses the BlobLeaseManager object
to renew the lease. The CancelAllWhenAnyCompletes method cancels the tasks specified as the first
two parameters. The following diagram illustrates using the BlobDistributedMutex class to elect a
leader and run a task that coordinates operations.

The following code example shows how to use the BlobDistributedMutex class in a worker role.
This code acquires a lease over a blob named MyLeaderCoordinatorTask in the lease’s container in
development storage, and specifies that the code defined in the MyLeaderCoordinatorTask method
should run if the role instance is elected the leader.

CHAPTER 6 | Catalog of patterns

203

var settings = new BlobSettings(CloudStorageAccount.DevelopmentStorageAccount,
 “leases”, “MyLeaderCoordinatorTask”);
var cts = new CancellationTokenSource();
var mutex = new BlobDistributedMutex(settings, MyLeaderCoordinatorTask);
mutex.RunTaskWhenMutexAcquired(this.cts.Token);
...

// Method that runs if the role instance is elected the leader
private static async Task MyLeaderCoordinatorTask(CancellationToken token)
{
 ...
}

Note the following points about the sample solution:
The blob is a potential single point of failure. If the blob service becomes unavailable, or is
inaccessible, the leader won’t be able to renew the lease and no other role instance will be able
to acquire the lease. In this case, no role instance will be able to act as the leader. However, the
blob service is designed to be resilient, so complete failure of the blob service is considered to be
extremely unlikely.

If the task being performed by the leader stalls, the leader might continue to renew the lease,
preventing any other role instance from acquiring the lease and taking over the leader role
in order to coordinate tasks. In the real world, the health of the leader should be checked at
frequent intervals.

The election process is nondeterministic. You can’t make any assumptions about which role
instance will acquire the blob lease and become the leader.

The blob used as the target of the blob lease shouldn’t be used for any other purpose. If a role
instance attempts to store data in this blob, this data won’t be accessible unless the role instance
is the leader and holds the blob lease.

•

•

•

•

•
•

•

•
•
•
•
•

The following guidance might also be relevant when implementing this pattern:
This pattern has a downloadable sample application.
Autoscaling Guidance. It’s possible to start and stop instances of the task hosts as the load on the
application varies. Autoscaling can help to maintain throughput and performance during times of
peak processing.

Compute Partitioning Guidance. This guidance describes how to allocate tasks to hosts in a
cloud service in a way that helps to minimize running costs while maintaining the scalability,
performance, availability, and security of the service.

The Task-based Asynchronous Pattern.

An example illustrating the Bully Algorithm.

An example illustrating the Ring Algorithm.

Apache Curator a client library for Apache ZooKeeper.

The article Lease Blob (REST API) on MSDN.

Related patterns and guidance

CHAPTER 6 | Catalog of patterns

https://github.com/mspnp/cloud-design-patterns/tree/master/leader-election
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://msdn.microsoft.com/library/dn589773.aspx
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
http://www.cs.colostate.edu/~cs551/CourseNotes/Synchronization/BullyExample.html
http://www.cs.colostate.edu/~cs551/CourseNotes/Synchronization/RingElectExample.html
http://curator.apache.org/
https://docs.microsoft.com/en-us/rest/api/storageservices/Lease-Blob?redirectedfrom=MSDN

204

When storing data, the priority for developers and data administrators is often focused on how the
data is stored, as opposed to how it’s read. The chosen storage format is usually closely related to
the format of the data, requirements for managing data size and data integrity, and the kind of store
in use. For example, when using NoSQL document store, the data is often represented as a series of
aggregates, each containing all of the information for that entity.

However, this can have a negative effect on queries. When a query only needs a subset of the
data from some entities, such as a summary of orders for several customers without all of the
order details, it must extract all of the data for the relevant entities in order to obtain the required
information.

Context and problem

Materialized View pattern
Generate prepopulated views over the data in one or more data stores when the data isn’t ideally
formatted for required query operations. This can help support efficient querying and data
extraction, and improve application performance.

To support efficient querying, a common solution is to generate, in advance, a view that materializes
the data in a format suited to the required results set. The Materialized View pattern describes
generating prepopulated views of data in environments where the source data isn’t in a suitable
format for querying, where generating a suitable query is difficult, or where query performance is
poor due to the nature of the data or the data store.

These materialized views, which only contain data required by a query, allow applications to
quickly obtain the information they need. In addition to joining tables or combining data entities,
materialized views can include the current values of calculated columns or data items, the results of
combining values or executing transformations on the data items, and values specified as part of the
query. A materialized view can even be optimized for just a single query.

A key point is that a materialized view and the data it contains is completely disposable because it
can be entirely rebuilt from the source data stores. A materialized view is never updated directly by
an application, and so it’s a specialized cache.

When the source data for the view changes, the view must be updated to include the new
information. You can schedule this to happen automatically, or when the system detects a change to
the original data. In some cases it might be necessary to regenerate the view manually. The figure
shows an example of how the Materialized View pattern might be used.

Solution

CHAPTER 6 | Catalog of patterns

205

Consider the following points when deciding how to implement this pattern:

How and when the view will be updated. Ideally it’ll regenerate in response to an event indicating a
change to the source data, although this can lead to excessive overhead if the source data changes
rapidly. Alternatively, consider using a scheduled task, an external trigger, or a manual action to
regenerate the view.

In some systems, such as when using the Event Sourcing pattern to maintain a store of only the
events that modified the data, materialized views are necessary. Prepopulating views by examining
all events to determine the current state might be the only way to obtain information from the event
store. If you’re not using Event Sourcing, you need to consider whether a materialized view is helpful
or not. Materialized views tend to be specifically tailored to one, or a small number of queries. If
many queries are used, materialized views can result in unacceptable storage capacity requirements
and storage cost.

Consider the impact on data consistency when generating the view, and when updating the view if
this occurs on a schedule. If the source data is changing at the point when the view is generated, the
copy of the data in the view won’t be fully consistent with the original data.

Consider where you’ll store the view. The view doesn’t have to be located in the same store or
partition as the original data. It can be a subset from a few different partitions combined.

A view can be rebuilt if lost. Because of that, if the view is transient and is only used to improve query
performance by reflecting the current state of the data, or to improve scalability, it can be stored in a
cache or in a less reliable location.

When defining a materialized view, maximize its value by adding data items or columns to it based
on computation or transformation of existing data items, on values passed in the query, or on
combinations of these values when appropriate.

Where the storage mechanism supports it, consider indexing the materialized view to further
increase performance. Most relational databases support indexing for views, as do big data solutions
based on Apache Hadoop.

Issues and considerations

CHAPTER 6 | Catalog of patterns

206

This pattern is useful when:
Creating materialized views over data that’s difficult to query directly, or where queries must be
very complex to extract data that’s stored in a normalized, semi-structured, or unstructured way.

Creating temporary views that can dramatically improve query performance, or can act directly
as source views or data transfer objects for the UI, for reporting, or for display.

Supporting occasionally connected or disconnected scenarios where connection to the data store
isn’t always available. The view can be cached locally in this case.

Simplifying queries and exposing data for experimentation in a way that doesn’t require
knowledge of the source data format. For example, by joining different tables in one or more
databases, or one or more domains in NoSQL stores, and then formatting the data to fit its
eventual use.

Providing access to specific subsets of the source data that, for security or privacy reasons,
shouldn’t be generally accessible, open to modification, or fully exposed to users.

Bridging different data stores, to take advantage of their individual capabilities. For example,
using a cloud store that’s efficient for writing as the reference data store, and a relational
database that offers good query and read performance to hold the materialized views.

This pattern isn’t useful in the following situations:
The source data is simple and easy to query.

The source data changes very quickly, or can be accessed without using a view. In these cases,
you should avoid the processing overhead of creating views.

Consistency is a high priority. The views might not always be fully consistent with the original
data.

When to use this pattern

•

•

•

•

•

•

•
•

•

CHAPTER 6 | Catalog of patterns

207

Creating this materialized view requires complex queries. However, by exposing the query result as
a materialized view, users can easily obtain the results and use them directly or incorporate them in
another query. The view is likely to be used in a reporting system or dashboard, and can be updated
on a scheduled basis such as weekly.

Although this example utilizes Azure table storage, many relational database management systems
also provide native support for materialized views.

The following figure shows an example of using the Materialized View pattern to generate a
summary of sales. Data in the Order, OrderItem, and Customer tables in separate partitions in an
Azure storage account are combined to generate a view containing the total sales value for each
product in the Electronics category, along with a count of the number of customers who made
purchases of each item.

Example

Related patterns and guidance
The following patterns and guidance might also be relevant when implementing this pattern:

Data Consistency Primer. The summary information in a materialized view has to be maintained
so that it reflects the underlying data values. As the data values change, it might not be practical
to update the summary data in real time, and instead you’ll have to adopt an eventually
consistent approach. Summarizes the issues surrounding maintaining consistency over
distributed data, and describes the benefits and tradeoffs of different consistency models.

Command and Query Responsibility Segregation (CQRS) pattern. Use to update the information
in a materialized view by responding to events that occur when the underlying data values
change.

Event Sourcing pattern. Use in conjunction with the CQRS pattern to maintain the information
in a materialized view. When the data values a materialized view is based on are changed, the
system can raise events that describe these changes and save them in an event store.

•

•

•

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/dn589800.aspx
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

208

Index Table pattern. The data in a materialized view is typically organized by a primary key, but
queries might need to retrieve information from this view by examining data in other fields. Use
to create secondary indexes over data sets for data stores that don’t support native secondary
indexes.

•

An application is required to perform a variety of tasks of varying complexity on the information that
it processes. A straightforward but inflexible approach to implementing an application is to perform
this processing as a monolithic module. However, this approach is likely to reduce the opportunities
for refactoring the code, optimizing it, or reusing it if parts of the same processing are required
elsewhere within the application.

The figure illustrates the issues with processing data using the monolithic approach. An application
receives and processes data from two sources. The data from each source is processed by a separate
module that performs a series of tasks to transform this data, before passing the result to the
business logic of the application.

Context and problem

Pipes and Filters pattern
Decompose a task that performs complex processing into a series of separate elements that can
be reused. This can improve performance, scalability, and reusability by allowing task elements that
perform the processing to be deployed and scaled independently.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/index-table

209

Some of the tasks that the monolithic modules perform are functionally very similar, but the modules
have been designed separately. The code that implements the tasks is closely coupled in a module,
and has been developed with little or no thought given to reuse or scalability.

However, the processing tasks performed by each module, or the deployment requirements for each
task, could change as business requirements are updated. Some tasks might be compute intensive
and could benefit from running on powerful hardware, while others might not require such expensive
resources. Also, additional processing might be required in the future, or the order in which the tasks
performed by the processing could change. A solution is required that addresses these issues, and
increases the possibilities for code reuse.

Break down the processing required for each stream into a set of separate components (or filters),
each performing a single task. By standardizing the format of the data that each component receives
and sends, these filters can be combined together into a pipeline. This helps to avoid duplicating
code, and makes it easy to remove, replace, or integrate additional components if the processing
requirements change. The next figure shows a solution implemented using pipes and filters.

The time it takes to process a single request depends on the speed of the slowest filter in the
pipeline. One or more filters could be a bottleneck, especially if a large number of requests appear
in a stream from a particular data source. A key advantage of the pipeline structure is that it provides
opportunities for running parallel instances of slow filters, enabling the system to spread the load
and improve throughput.

The filters that make up a pipeline can run on different machines, enabling them to be scaled
independently and take advantage of the elasticity that many cloud environments provide. A filter
that is computationally intensive can run on high performance hardware, while other less demanding
filters can be hosted on less expensive commodity hardware. The filters don’t even have to be in
the same data center or geographical location, which allows each element in a pipeline to run in an
environment that is close to the resources it requires. The next figure shows an example applied to
the pipeline for the data from Source 1.

Solution

CHAPTER 6 | Catalog of patterns

210

If the input and output of a filter are structured as a stream, it’s possible to perform the processing
for each filter in parallel. The first filter in the pipeline can start its work and output its results, which
are passed directly on to the next filter in the sequence before the first filter has completed its work.

Another benefit is the resiliency that this model can provide. If a filter fails or the machine it’s running
on is no longer available, the pipeline can reschedule the work that the filter was performing and
direct this work to another instance of the component. Failure of a single filter doesn’t necessarily
result in failure of the entire pipeline.

Using the Pipes and Filters pattern in conjunction with the Compensating Transaction pattern is
an alternative approach to implementing distributed transactions. A distributed transaction can
be broken down into separate, compensable tasks, each of which can be implemented by using a
filter that also implements the Compensating Transaction pattern. The filters in a pipeline can be
implemented as separate hosted tasks running close to the data that they maintain.

Issues and considerations

You should consider the following points when deciding how to implement this pattern:
Complexity. The increased flexibility that this pattern provides can also introduce complexity,
especially if the filters in a pipeline are distributed across different servers.

Reliability. Use an infrastructure that ensures that data flowing between filters in a pipeline
won’t be lost.

Idempotency. If a filter in a pipeline fails after receiving a message and the work is rescheduled
to another instance of the filter, part of the work might have already been completed. If this work
updates some aspect of the global state (such as information stored in a database), the same
update could be repeated. A similar issue might occur if a filter fails after posting its results to
the next filter in the pipeline, but before indicating that it’s completed its work successfully. In
these cases, the same work could be repeated by another instance of the filter, causing the same
results to be posted twice. This could result in subsequent filters in the pipeline processing the
same data twice. Therefore filters in a pipeline should be designed to be idempotent. For more
information see Idempotency Patterns on Jonathan Oliver’s blog.

Repeated messages. If a filter in a pipeline fails after posting a message to the next stage of the
pipeline, another instance of the filter might be run, and it’ll post a copy of the same message to
the pipeline. This could cause two instances of the same message to be passed to the next filter.
To avoid this, the pipeline should detect and eliminate duplicate messages.

•

•

•

•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction

211

If you’re implementing the pipeline by using message queues (such as Microsoft Azure Service
Bus queues), the message queuing infrastructure might provide automatic duplicate message
detection and removal.

Context and state. In a pipeline, each filter essentially runs in isolation and shouldn’t make
any assumptions about how it was invoked. This means that each filter should be provided
with sufficient context to perform its work. This context could include a large amount of state
information.

•

When to use this pattern
Use this pattern when:

The processing required by an application can easily be broken down into a set of independent
steps.

The processing steps performed by an application have different scalability requirements. It’s
possible to group filters that should scale together in the same process. For more information,
see the Compute Resource Consolidation pattern.

Flexibility is required to allow reordering of the processing steps performed by an application, or
the capability to add and remove steps.

The system can benefit from distributing the processing for steps across different servers.

A reliable solution is required that minimizes the effects of failure in a step while data is being
processed.

This pattern might not be useful when:
The processing steps performed by an application aren’t independent, or they have to be
performed together as part of the same transaction.

The amount of context or state information required by a step makes this approach inefficient. It
might be possible to persist state information to a database instead, but don’t use this strategy if
the additional load on the database causes excessive contention.

•
•

•

•

•

•

•

You can use a sequence of message queues to provide the infrastructure required to implement a
pipeline. An initial message queue receives unprocessed messages. A component implemented as
a filter task listens for a message on this queue, performs its work, and then posts the transformed
message to the next queue in the sequence. Another filter task can listen for messages on this queue,
process them, post the results to another queue, and so on until the fully transformed data appears
in the final message in the queue. The next figure illustrates implementing a pipeline using message
queues.

Example

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/compute-resource-consolidation

212

If you’re building a solution on Azure you can use Service Bus queues to provide a reliable and
scalable queuing mechanism. The ServiceBusPipeFilter class shown below in C# demonstrates how
you can implement a filter that receives input messages from a queue, processes these messages,
and posts the results to another queue.

The ServiceBusPipeFilter class is defined in the PipesAndFilters.Shared project available from GitHub.

public class ServiceBusPipeFilter
{
 ...
 private readonly string inQueuePath;
 private readonly string outQueuePath;
 ...
 private QueueClient inQueue;
 private QueueClient outQueue;
 ...

 public ServiceBusPipeFilter(..., string inQueuePath, string outQueuePath = null)
 {
 ...
 this.inQueuePath = inQueuePath;
 this.outQueuePath = outQueuePath;
 }

 public void Start()
 {
 ...
 // Create the outbound filter queue if it doesn’t exist.
 ...
 this.outQueue = QueueClient.CreateFromConnectionString(...);

 ...
 // Create the inbound and outbound queue clients.
 this.inQueue = QueueClient.CreateFromConnectionString(...);
 }

 public void OnPipeFilterMessageAsync(
 Func<BrokeredMessage, Task<BrokeredMessage>> asyncFilterTask, ...)
 {
 ...

 this.inQueue.OnMessageAsync(
 async (msg) =>
 {
 ...
 // Process the filter and send the output to the
 // next queue in the pipeline.
 var outMessage = await asyncFilterTask(msg);

 // Send the message from the filter processor
 // to the next queue in the pipeline.
 if (outQueue != null)
 {
 await outQueue.SendAsync(outMessage);
 }

 // Note: There’s a chance that the same message could be sent twice
 // or that a message gets processed by an upstream or downstream
 // filter at the same time.
 // This would happen in a situation where processing of a message was
 // completed, it was sent to the next pipe/queue, and then failed
 // to complete when using the PeekLock method.
 // Idempotent message processing and concurrency should be considered
 // in a real-world implementation.
 },
 options);
 }

 public async Task Close(TimeSpan timespan)
 {
 // Pause the processing threads.
 this.pauseProcessingEvent.Reset();

 // There’s no clean approach for waiting for the threads to complete
 // the processing. This example simply stops any new processing, waits
 // for the existing thread to complete, then closes the message pump
 // and finally returns.
 s Thread.Sleep(timespan);

 this.inQueue.Close();
 ...
 }

CHAPTER 6 | Catalog of patterns

https://github.com/mspnp/cloud-design-patterns/tree/master/pipes-and-filters

213

The Start method in the ServiceBusPipeFilter class connects to a pair of input and output queues,
and the Close method disconnects from the input queue. The OnPipeFilterMessageAsync method
performs the actual processing of messages, the asyncFilterTask parameter to this method specifies
the processing to be performed. The OnPipeFilterMessageAsync method waits for incoming
messages on the input queue, runs the code specified by the asyncFilterTask parameter over each
message as it arrives, and posts the results to the output queue. The queues themselves are specified
by the constructor.

The sample solution implements filters in a set of worker roles. Each worker role can be scaled
independently, depending on the complexity of the business processing that it performs or the
resources required for processing. Additionally, multiple instances of each worker role can be run in
parallel to improve throughput.

The following code shows an Azure worker role named PipeFilterARoleEntry, defined in the
PipeFilterA project in the sample solution.

public class PipeFilterARoleEntry : RoleEntryPoint
{
 ...
 private ServiceBusPipeFilter pipeFilterA;

 public override bool OnStart()
 {
 ...
 this.pipeFilterA = new ServiceBusPipeFilter(
 ...,
 Constants.QueueAPath,
 Constants.QueueBPath);

 this.pipeFilterA.Start();
 ...
 }

 public override void Run()
 {
 this.pipeFilterA.OnPipeFilterMessageAsync(async (msg) =>
 {
 // Clone the message and update it.
 // Properties set by the broker (Deliver count, enqueue time, ...)
 // aren’t cloned and must be copied over if required.
 var newMsg = msg.Clone();

 await Task.Delay(500); // DOING WORK

 Trace.TraceInformation(“Filter A processed message:{0} at {1}”,
 msg.MessageId, DateTime.UtcNow);

 newMsg.Properties.Add(Constants.FilterAMessageKey, “Complete”);

 return newMsg;
 });

 ...
 }

 ...
}

This role contains a ServiceBusPipeFilter object. The OnStart method in the role connects to the
queues for receiving input messages and posting output messages (the names of the queues are
defined in the Constants class). The Run method invokes the OnPipeFilterMessagesAsync method
to perform some processing on each message that’s received (in this example, the processing is
simulated by waiting for a short period of time). When processing is complete, a new message is
constructed containing the results (in this case, the input message has a custom property added),
and this message is posted to the output queue.

CHAPTER 6 | Catalog of patterns

214

The sample code contains another worker role named PipeFilterBRoleEntry in the PipeFilterB project.
This role is similar to PipeFilterARoleEntry except that it performs different processing in the Run
method. In the example solution, these two roles are combined to construct a pipeline, the output
queue for the PipeFilterARoleEntry role is the input queue for the PipeFilterBRoleEntry role.

The sample solution also provides two additional roles named InitialSenderRoleEntry (in
the InitialSender project) and FinalReceiverRoleEntry (in the FinalReceiver project). The
InitialSenderRoleEntry role provides the initial message in the pipeline. The OnStart method connects
to a single queue and the Run method posts a method to this queue. This queue is the input queue
used by the PipeFilterARoleEntry role, so posting a message to it causes the message to be received
and processed by the PipeFilterARoleEntry role. The processed message then passes through the
PipeFilterBRoleEntry role.

The input queue for the FinalReceiveRoleEntry role is the output queue for the PipeFilterBRoleEntry
role. The Run method in the FinalReceiveRoleEntry role, shown below, receives the message and
performs some final processing. Then it writes the values of the custom properties added by the
filters in the pipeline to the trace output.

public class FinalReceiverRoleEntry : RoleEntryPoint
{
 ...
 // Final queue/pipe in the pipeline to process data from.
 private ServiceBusPipeFilter queueFinal;

 public override bool OnStart()
 {
 ...
 // Set up the queue.
 this.queueFinal = new ServiceBusPipeFilter(...,Constants.QueueFinalPath);
 this.queueFinal.Start();
 ...
 }

 public override void Run()
 {
 this.queueFinal.OnPipeFilterMessageAsync(
 async (msg) =>
 {
 await Task.Delay(500); // DOING WORK

 // The pipeline message was received.
 Trace.TraceInformation(
 “Pipeline Message Complete - FilterA:{0} FilterB:{1}”,
 msg.Properties[Constants.FilterAMessageKey],
 msg.Properties[Constants.FilterBMessageKey]);

 return null;
 });
 ...
 }

 ...
}

The following patterns and guidance might also be relevant when implementing this pattern:
A sample that demonstrates this pattern is available on GitHub.

Competing Consumers pattern. A pipeline can contain multiple instances of one or more filters.
This approach is useful for running parallel instances of slow filters, enabling the system to
spread the load and improve throughput. Each instance of a filter will compete for input with the
other instances, two instances of a filter shouldn’t be able to process the same data. Provides an
explanation of this approach.

Related patterns and guidance

•
•

CHAPTER 6 | Catalog of patterns

https://github.com/mspnp/cloud-design-patterns/tree/master/pipes-and-filters
https://docs.microsoft.com/en-us/azure/architecture/patterns/competing-consumers

215

Compute Resource Consolidation pattern. It might be possible to group filters that should scale
together into the same process. Provides more information about the benefits and tradeoffs of
this strategy.

Compensating Transaction pattern. A filter can be implemented as an operation that can be
reversed, or that has a compensating operation that restores the state to a previous version in
the event of a failure. Explains how this can be implemented to maintain or achieve eventual
consistency.

Idempotency Patterns on Jonathan Oliver’s blog.

•

•

•

Applications can delegate specific tasks to other services, for example, to perform background
processing or to integrate with other applications or services. In the cloud, a message queue is
typically used to delegate tasks to background processing. In many cases the order requests are
received in by a service isn’t important. In some cases, though, it’s necessary to prioritize specific
requests. These requests should be processed earlier than lower priority requests that were sent
previously by the application.

Context and problem

Priority Queue pattern
Prioritize requests sent to services so that requests with a higher priority are received and processed
more quickly than those with a lower priority. This pattern is useful in applications that offer different
service level guarantees to individual clients.

A queue is usually a first-in, first-out (FIFO) structure, and consumers typically receive messages in
the same order that they were posted to the queue. However, some message queues support priority
messaging. The application posting a message can assign a priority and the messages in the queue
are automatically reordered so that those with a higher priority will be received before those with a
lower priority. The figure illustrates a queue with priority messaging.

Solution

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/compute-resource-consolidation
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
http://blog.jonathanoliver.com/idempotency-patterns/

216

Most message queue implementations support multiple consumers (following the Competing
Consumers pattern), and the number of consumer processes can be scaled up or down depending
on demand.

In systems that don’t support priority-based message queues, an alternative solution is to maintain
a separate queue for each priority. The application is responsible for posting messages to the
appropriate queue. Each queue can have a separate pool of consumers. Higher priority queues can
have a larger pool of consumers running on faster hardware than lower priority queues. The next
figure illustrates using separate message queues for each priority.

A variation on this strategy is to have a single pool of consumers that check for messages on high
priority queues first, and only then start to fetch messages from lower priority queues. There are
some semantic differences between a solution that uses a single pool of consumer processes (either
with a single queue that supports messages with different priorities or with multiple queues that
each handle messages of a single priority), and a solution that uses multiple queues with a separate
pool for each queue.

In the single pool approach, higher priority messages are always received and processed before lower
priority messages. In theory, messages that have a very low priority could be continually superseded
and might never be processed. In the multiple pool approach, lower priority messages will always
be processed, just not as quickly as those of a higher priority (depending on the relative size of the
pools and the resources that they have available).

Using a priority queuing mechanism can provide the following advantages:

It allows applications to meet business requirements that require prioritization of availability or
performance, such as offering different levels of service to specific groups of customers.

•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/competing-consumers
https://docs.microsoft.com/en-us/azure/architecture/patterns/competing-consumers

217

It can help to minimize operational costs. In the single queue approach, you can scale back the
number of consumers if necessary. High priority messages will still be processed first (although
possibly more slowly), and lower priority messages might be delayed for longer. If you’ve
implemented the multiple message queue approach with separate pools of consumers for
each queue, you can reduce the pool of consumers for lower priority queues, or even suspend
processing for some very low priority queues by stopping all the consumers that listen for
messages on those queues.

The multiple message queue approach can help maximize application performance and
scalability by partitioning messages based on processing requirements. For example, vital
tasks can be prioritized to be handled by receivers that run immediately while less important
background tasks can be handled by receivers that are scheduled to run at less busy periods.

•

•

Consider the following points when deciding how to implement this pattern:
Define the priorities in the context of the solution. For example, high priority could mean that
messages should be processed within ten seconds. Identify the requirements for handling high
priority items, and the other resources that should be allocated to meet these criteria.

Decide if all high priority items must be processed before any lower priority items. If the messages
are being processed by a single pool of consumers, you have to provide a mechanism that can
preempt and suspend a task that’s handling a low priority message if a higher priority message
becomes available.

In the multiple queue approach, when using a single pool of consumer processes that listen on
all queues rather than a dedicated consumer pool for each queue, the consumer must apply an
algorithm that ensures it always services messages from higher priority queues before those from
lower priority queues.

Monitor the processing speed on high and low priority queues to ensure that messages in these
queues are processed at the expected rates.

If you need to guarantee that low priority messages will be processed, it’s necessary to implement
the multiple message queue approach with multiple pools of consumers. Alternatively, in a queue
that supports message prioritization, it’s possible to dynamically increase the priority of a queued
message as it ages. However, this approach depends on the message queue providing this feature.

Using a separate queue for each message priority works best for systems that have a small number of
well-defined priorities.

Message priorities can be determined logically by the system. For example, rather than having
explicit high and low priority messages, they could be designated as “fee paying customer,” or “non-
fee paying customer.” Depending on your business model, your system can allocate more resources
to processing messages from fee paying customers than non-fee paying ones.

There might be a financial and processing cost associated with checking a queue for a message
(some commercial messaging systems charge a small fee each time a message is posted or retrieved,
and each time a queue is queried for messages). This cost increases when checking multiple queues.

It’s possible to dynamically adjust the size of a pool of consumers based on the length of the queue
that the pool is servicing. For more information, see the Autoscaling Guidance.

Issues and Considerations

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling

218

This pattern is useful in scenarios where:

The system must handle multiple tasks that have different priorities.

Different users or tenants should be served with different priority.

Microsoft Azure doesn’t provide a queuing mechanism that natively supports automatic prioritization
of messages through sorting. However, it does provide Azure Service Bus topics and subscriptions
that support a queuing mechanism that provides message filtering, together with a wide range of
flexible capabilities that make it ideal for use in most priority queue implementations.

An Azure solution can implement a Service Bus topic an application can post messages to, in the
same way as a queue. Messages can contain metadata in the form of application-defined custom
properties. Service Bus subscriptions can be associated with the topic, and these subscriptions can
filter messages based on their properties. When an application sends a message to a topic, the
message is directed to the appropriate subscription where it can be read by a consumer. Consumer
processes can retrieve messages from a subscription using the same semantics as a message queue
(a subscription is a logical queue). The following figure illustrates implementing a priority queue with
Azure Service Bus topics and subscriptions.

When to use this pattern

Example

•
•

CHAPTER 6 | Catalog of patterns

219

In the figure above, the application creates several messages and assigns a custom property called
Priority in each message with a value, either High or Low. The application posts these messages to a
topic. The topic has two associated subscriptions that both filter messages by examining the Priority
property. One subscription accepts messages where the Priority property is set to High, and the other
accepts messages where the Priority property is set to Low. A pool of consumers reads messages
from each subscription. The high priority subscription has a larger pool, and these consumers might
be running on more powerful computers with more resources available than the consumers in the
low priority pool.

Note that there’s nothing special about the designation of high and low priority messages in this
example. They’re simply labels specified as properties in each message, and are used to direct
messages to a specific subscription. If additional priorities are required, it’s relatively easy to create
further subscriptions and pools of consumer processes to handle these priorities.

The PriorityQueue solution available on GitHub contains an implementation of this approach. This
solution contains two worker role projects named PriorityQueue.High and PriorityQueue.Low. These
worker roles inherit from the PriorityWorkerRole class that contains the functionality for connecting
to a specified subscription in the OnStart method.
The PriorityQueue.High and PriorityQueue.Low worker roles connect to different subscriptions,
defined by their configuration settings. An administrator can configure different numbers of each
role to be run. Typically there’ll be more instances of the PriorityQueue.High worker role than the
PriorityQueue.Low worker role.

The Run method in the PriorityWorkerRole class arranges for the virtual ProcessMessage method
(also defined in the PriorityWorkerRole class) to be run for each message received on the queue. The
following code shows the Run and ProcessMessage methods. The QueueManager class, defined in
the PriorityQueue.Shared project, provides helper methods for using Azure Service Bus queues.

public class PriorityWorkerRole : RoleEntryPoint
{
 private QueueManager queueManager;
 ...

 public override void Run()
 {
 // Start listening for messages on the subscription.
 var subscriptionName = CloudConfigurationManager.GetSetting(“SubscriptionName”);
 this.queueManager.ReceiveMessages(subscriptionName, this.ProcessMessage);
 ...;
 }
 ...

 protected virtual async Task ProcessMessage(BrokeredMessage message)
 {
 // Simulating processing.
 await Task.Delay(TimeSpan.FromSeconds(2));
 }
}

The PriorityQueue.High and PriorityQueue.Low worker roles both override the default functionality
of the ProcessMessage method. The code below shows the ProcessMessage method for the
PriorityQueue.High worker role.

CHAPTER 6 | Catalog of patterns

220

protected override async Task ProcessMessage(BrokeredMessage message)
{
 // Simulate message processing for High priority messages.
 await base.ProcessMessage(message);
 Trace.TraceInformation(“High priority message processed by “ +
 RoleEnvironment.CurrentRoleInstance.Id + “ MessageId: “ + message.MessageId);
}

// Send a low priority batch.
var lowMessages = new List<BrokeredMessage>();

for (int i = 0; i < 10; i++)
{
 var message = new BrokeredMessage() { MessageId = Guid.NewGuid().ToString() };
 message.Properties[“Priority”] = Priority.Low;
 lowMessages.Add(message);
}

this.queueManager.SendBatchAsync(lowMessages).Wait();
...

// Send a high priority batch.
var highMessages = new List<BrokeredMessage>();

for (int i = 0; i < 10; i++)
{
 var message = new BrokeredMessage() { MessageId = Guid.NewGuid().ToString() };
 message.Properties[“Priority”] = Priority.High;
 highMessages.Add(message);
}

this.queueManager.SendBatchAsync(highMessages).Wait();

When an application posts messages to the topic associated with the subscriptions used by the
PriorityQueue.High and PriorityQueue.Low worker roles, it specifies the priority by using the
Priority custom property, as shown in the following code example. This code (implemented in the
WorkerRole class in the PriorityQueue.Sender project), uses the SendBatchAsync helper method of
the QueueManager class to post messages to a topic in batches.

The following patterns and guidance might also be relevant when implementing this pattern:
A sample that demonstrates this pattern is available on GitHub.

Asynchronous Messaging Primer. A consumer service that processes a request might need to
send a reply to the instance of the application that posted the request. Provides information on
the strategies that you can use to implement request/response messaging.

Competing Consumers pattern. To increase the throughput of the queues, it’s possible to have
multiple consumers that listen on the same queue, and process the tasks in parallel. These
consumers will compete for messages, but only one should be able to process each message.
Provides more information on the benefits and tradeoffs of implementing this approach.

Throttling pattern. You can implement throttling by using queues. Priority messaging can be

Related patterns and guidance

•

•

•

•

CHAPTER 6 | Catalog of patterns

https://github.com/mspnp/cloud-design-patterns/tree/master/priority-queue
https://msdn.microsoft.com/library/dn589781.aspx
https://docs.microsoft.com/en-us/azure/architecture/patterns/competing-consumers
https://docs.microsoft.com/en-us/azure/architecture/patterns/throttling

221

used to ensure that requests from critical applications, or applications being run by high-value
customers, are given priority over requests from less important applications.

Autoscaling Guidance. It might be possible to scale the size of the pool of consumer processes
handling a queue depending on the length of the queue. This strategy can help to improve
performance, especially for pools handling high priority messages.

Enterprise Integration Patterns with Service Bus on Abhishek Lal’s blog.

•

•

Many solutions in the cloud involve running tasks that invoke services. In this environment, if a
service is subjected to intermittent heavy loads, it can cause performance or reliability issues.

A service could be part of the same solution as the tasks that use it, or it could be a third-party
service providing access to frequently used resources such as a cache or a storage service. If the
same service is used by a number of tasks running concurrently, it can be difficult to predict the
volume of requests to the service at any time.

A service might experience peaks in demand that cause it to overload and be unable to respond to
requests in a timely manner. Flooding a service with a large number of concurrent requests can also
result in the service failing if it’s unable to handle the contention these requests cause.

Refactor the solution and introduce a queue between the task and the service. The task and the
service run asynchronously. The task posts a message containing the data required by the service to
a queue. The queue acts as a buffer, storing the message until it’s retrieved by the service. The service
retrieves the messages from the queue and processes them. Requests from a number of tasks, which
can be generated at a highly variable rate, can be passed to the service through the same message
queue. This figure shows using a queue to level the load on a service.

Context and problem

Solution

Queue-Based Load Leveling pattern
Use a queue that acts as a buffer between a task and a service it invokes in order to smooth
intermittent heavy loads that can cause the service to fail or the task to time out. This can help to
minimize the impact of peaks in demand on availability and responsiveness for both the task and the
service.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://abhishekrlal.com/2013/01/11/enterprise-integration-patterns-with-service-bus-part-2/

222

The queue decouples the tasks from the service, and the service can handle the messages at its own
pace regardless of the volume of requests from concurrent tasks. Additionally, there’s no delay to a
task if the service isn’t available at the time it posts a message to the queue.

This pattern provides the following benefits:

It can help to maximize availability because delays arising in services won’t have an immediate
and direct impact on the application, which can continue to post messages to the queue even
when the service isn’t available or isn’t currently processing messages.

It can help to maximize scalability because both the number of queues and the number of
services can be varied to meet demand.

It can help to control costs because the number of service instances deployed only have to be
adequate to meet average load rather than the peak load.

Some services implement throttling when demand reaches a threshold beyond which the system
could fail. Throttling can reduce the functionality available. You can implement load leveling with
these services to ensure that this threshold isn’t reached.

•

•

•

•

•

•

Issues and considerations
Consider the following points when deciding how to implement this pattern:

It’s necessary to implement application logic that controls the rate at which services handle
messages to avoid overwhelming the target resource. Avoid passing spikes in demand to the
next stage of the system. Test the system under load to ensure that it provides the required
leveling, and adjust the number of queues and the number of service instances that handle
messages to achieve this.

Message queues are a one-way communication mechanism. If a task expects a reply from a
service, it might be necessary to implement a mechanism that the service can use to send a
response. For more information, see the Asynchronous Messaging Primer.

Be careful if you apply autoscaling to services that are listening for requests on the queue. This
can result in increased contention for any resources that these services share and diminish the
effectiveness of using the queue to level the load.

This pattern is useful to any application that uses services that are subject to overloading.

This pattern isn’t useful if the application expects a response from the service with minimal latency.

A Microsoft Azure web role stores data using a separate storage service. If a large number of
instances of the web role run concurrently, it’s possible that the storage service will be unable to
respond to requests quickly enough to prevent these requests from timing out or failing. This figure
highlights a service being overwhelmed by a large number of concurrent requests from instances of
a web role.

When to use this pattern

Example

CHAPTER 6 | Catalog of patterns

223

To resolve this, you can use a queue to level the load between the web role instances and the storage
service. However, the storage service is designed to accept synchronous requests and can’t be easily
modified to read messages and manage throughput. You can introduce a worker role to act as a
proxy service that receives requests from the queue and forwards them to the storage service. The
application logic in the worker role can control the rate at which it passes requests to the storage
service to prevent the storage service from being overwhelmed. This figure illustrates sing a queue
and a worker role to level the load between instances of the web role and the service.

CHAPTER 6 | Catalog of patterns

224

The following patterns and guidance might also be relevant when implementing this pattern:
Asynchronous Messaging Primer. Message queues are inherently asynchronous. It might be
necessary to redesign the application logic in a task if it’s adapted from communicating directly
with a service to using a message queue. Similarly, it might be necessary to refactor a service to
accept requests from a message queue. Alternatively, it might be possible to implement a proxy
service, as described in the example.

Competing Consumers pattern. It might be possible to run multiple instances of a service, each
acting as a message consumer from the load-leveling queue. You can use this approach to adjust
the rate at which messages are received and passed to a service.

Throttling pattern. A simple way to implement throttling with a service is to use queue-based
load leveling and route all requests to a service through a message queue. The service can
process requests at a rate that ensures that resources required by the service aren’t exhausted,
and to reduce the amount of contention that could occur.

Queue Service Concepts. Information about choosing a messaging and queuing mechanism in
Azure applications.

Related patterns and guidance

•

•

•

•

•

An application that communicates with elements running in the cloud has to be sensitive to the
transient faults that can occur in this environment. Faults include the momentary loss of network
connectivity to components and services, the temporary unavailability of a service, or timeouts that
occur when a service is busy.

These faults are typically self-correcting, and if the action that triggered a fault is repeated after a
suitable delay it’s likely to be successful. For example, a database service that’s processing a large
number of concurrent requests can implement a throttling strategy that temporarily rejects any
further requests until its workload has eased. An application trying to access the database might fail
to connect, but if it tries again after a delay it might succeed.

Context and problem

Retry pattern
Enable an application to handle transient failures when it tries to connect to a service or network
resource, by transparently retrying a failed operation. This can improve the stability of the application.

In the cloud, transient faults aren’t uncommon and an application should be designed to handle
them elegantly and transparently. This minimizes the effects faults can have on the business tasks the
application is performing.

If an application detects a failure when it tries to send a request to a remote service, it can handle the
failure using the following strategies:

Cancel. If the fault indicates that the failure isn’t transient or is unlikely to be successful if
repeated, the application should cancel the operation and report an exception. For example, an
authentication failure caused by providing invalid credentials is not likely to succeed no matter
how many times it’s attempted.

Solution

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/dn589781.aspx
https://docs.microsoft.com/en-us/azure/architecture/patterns/competing-consumers
https://docs.microsoft.com/en-us/azure/architecture/patterns/throttling
https://docs.microsoft.com/en-us/rest/api/storageservices/Queue-Service-Concepts?redirectedfrom=MSDN

225

Retry. If the specific fault reported is unusual or rare, it might have been caused by unusual
circumstances such as a network packet becoming corrupted while it was being transmitted. In
this case, the application could retry the failing request again immediately because the same
failure is unlikely to be repeated and the request will probably be successful.

Retry after delay. If the fault is caused by one of the more commonplace connectivity or busy
failures, the network or service might need a short period while the connectivity issues are
corrected or the backlog of work is cleared. The application should wait for a suitable time before
retrying the request.

For the more common transient failures, the period between retries should be chosen to spread
requests from multiple instances of the application as evenly as possible. This reduces the chance
of a busy service continuing to be overloaded. If many instances of an application are continually
overwhelming a service with retry requests, it’ll take the service longer to recover.

If the request still fails, the application can wait and make another attempt. If necessary, this process
can be repeated with increasing delays between retry attempts, until some maximum number of
requests have been attempted. The delay can be increased incrementally or exponentially, depending
on the type of failure and the probability that it’ll be corrected during this time.

The following diagram illustrates invoking an operation in a hosted service using this pattern. If the
request is unsuccessful after a predefined number of attempts, the application should treat the fault
as an exception and handle it accordingly.

•

•

The application should wrap all attempts to access a remote service in code that implements a
retry policy matching one of the strategies listed above. Requests sent to different services can be
subject to different policies. Some vendors provide libraries that implement retry policies, where the
application can specify the maximum number of retries, the time between retry attempts, and other
parameters.

An application should log the details of faults and failing operations. This information is useful to
operators. If a service is frequently unavailable or busy, it’s often because the service has exhausted
its resources. You can reduce the frequency of these faults by scaling out the service. For example,

CHAPTER 6 | Catalog of patterns

226

if a database service is continually overloaded, it might be beneficial to partition the database and
spread the load across multiple servers.

Microsoft Entity Framework provides facilities for retrying database operations. Also, most Azure
services and client SDKs include a retry mechanism. For more information, see Retry guidance for
specific services.

Issues and considerations
You should consider the following points when deciding how to implement this pattern.

The retry policy should be tuned to match the business requirements of the application and the
nature of the failure. For some noncritical operations, it’s better to fail fast rather than retry several
times and impact the throughput of the application. For example, in an interactive web application
accessing a remote service, it’s better to fail after a smaller number of retries with only a short
delay between retry attempts, and display a suitable message to the user (for example, “please try
again later”). For a batch application, it might be more appropriate to increase the number of retry
attempts with an exponentially increasing delay between attempts.

An aggressive retry policy with minimal delay between attempts, and a large number of retries, could
further degrade a busy service that’s running close to or at capacity. This retry policy could also affect
the responsiveness of the application if it’s continually trying to perform a failing operation.

If a request still fails after a significant number of retries, it’s better for the application to prevent
further requests going to the same resource and simply report a failure immediately. When the
period expires, the application can tentatively allow one or more requests through to see whether
they’re successful. For more details of this strategy, see the Circuit Breaker pattern.

Consider whether the operation is idempotent. If so, it’s inherently safe to retry. Otherwise, retries
could cause the operation to be executed more than once, with unintended side effects. For example,
a service might receive the request, process the request successfully, but fail to send a response. At
that point, the retry logic might re-send the request, assuming that the first request wasn’t received.

A request to a service can fail for a variety of reasons raising different exceptions depending on the
nature of the failure. Some exceptions indicate a failure that can be resolved quickly, while others
indicate that the failure is longer lasting. It’s useful for the retry policy to adjust the time between
retry attempts based on the type of the exception.

Consider how retrying an operation that’s part of a transaction will affect the overall transaction
consistency. Fine tune the retry policy for transactional operations to maximize the chance of success
and reduce the need to undo all the transaction steps.

Ensure that all retry code is fully tested against a variety of failure conditions. Check that it doesn’t
severely impact the performance or reliability of the application, cause excessive load on services and
resources, or generate race conditions or bottlenecks.

Implement retry logic only where the full context of a failing operation is understood. For example,
if a task that contains a retry policy invokes another task that also contains a retry policy, this extra
layer of retries can add long delays to the processing. It might be better to configure the lower-level
task to fail fast and report the reason for the failure back to the task that invoked it. This higher-level
task can then handle the failure based on its own policy.
It’s important to log all connectivity failures that cause a retry so that underlying problems with the
application, services, or resources can be identified.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/ef/
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific
https://docs.microsoft.com/en-us/azure/architecture/best-practices/retry-service-specific
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

227

Investigate the faults that are most likely to occur for a service or a resource to discover if they’re
likely to be long lasting or terminal. If they are, it’s better to handle the fault as an exception. The
application can report or log the exception, and then try to continue either by invoking an alternative
service (if one is available), or by offering degraded functionality. For more information on how to
detect and handle long-lasting faults, see the Circuit Breaker pattern.

An application performs tasks that include a number of steps, some of which might invoke remote
services or access remote resources. The individual steps might be independent of each other, but
they are orchestrated by the application logic that implements the task.

Whenever possible, the application should ensure that the task runs to completion and resolve any
failures that might occur when accessing remote services or resources. Failures can occur for many
reasons. For example, the network might be down, communications could be interrupted, a remote
service might be unresponsive or in an unstable state, or a remote resource might be temporarily
inaccessible, perhaps due to resource constraints. In many cases the failures will be transient and can
be handled by using the Retry pattern.

If the application detects a more permanent fault it can’t easily recover from, it must be able to
restore the system to a consistent state and ensure integrity of the entire operation.

Context and problem

Scheduler Agent Supervisor pattern
Coordinate a set of distributed actions as a single operation. If any of the actions fail, try to handle
the failures transparently, or else undo the work that was performed, so the entire operation
succeeds or fails as a whole. This can add resiliency to a distributed system, by enabling it to recover
and retry actions that fail due to transient exceptions, long-lasting faults, and process failures.

The Scheduler Agent Supervisor pattern defines the following actors. These actors orchestrate the
steps to be performed as part of the overall task.

The Scheduler arranges for the steps that make up the task to be executed and orchestrates
their operation. These steps can be combined into a pipeline or workflow. The Scheduler is
responsible for ensuring that the steps in this workflow are performed in the right order. As each
step is performed, the Scheduler records the state of the workflow, such as “step not yet started,”
“step running,” or “step completed.” The state information should also include an upper limit
of the time allowed for the step to finish, called the complete-by time. If a step requires access
to a remote service or resource, the Scheduler invokes the appropriate Agent, passing it the
details of the work to be performed. The Scheduler typically communicates with an Agent using
asynchronous request/response messaging. This can be implemented using queues, although
other distributed messaging technologies could be used instead.

The Scheduler performs a similar function to the Process Manager in the Process Manager
pattern. The actual workflow is typically defined and implemented by a workflow engine that’s
controlled by the Scheduler. This approach decouples the business logic in the workflow from the
Scheduler.

Solution

•

•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html

228

The Agent contains logic that encapsulates a call to a remote service, or access to a remote
resource referenced by a step in a task. Each Agent typically wraps calls to a single service or
resource, implementing the appropriate error handling and retry logic (subject to a timeout
constraint, described later). If the steps in the workflow being run by the Scheduler use several
services and resources across different steps, each step might reference a different Agent (this is
an implementation detail of the pattern).

The Supervisor monitors the status of the steps in the task being performed by the Scheduler.
It runs periodically (the frequency will be system specific), and examines the status of steps
maintained by the Scheduler. If it detects any that have timed out or failed, it arranges for
the appropriate Agent to recover the step or execute the appropriate remedial action (this
might involve modifying the status of a step). Note that the recovery or remedial actions are
implemented by the Scheduler and Agents. The Supervisor should simply request that these
actions be performed.

The Scheduler, Agent, and Supervisor are logical components and their physical implementation
depends on the technology being used. For example, several logical agents might be implemented
as part of a single web service.

The Scheduler maintains information about the progress of the task and the state of each step in a
durable data store, called the state store. The Supervisor can use this information to help determine
whether a step has failed. The figure illustrates the relationship between the Scheduler, the Agents,
the Supervisor, and the state store.

•

•

CHAPTER 6 | Catalog of patterns

229

This diagram shows a simplified version of the pattern. In a real implementation, there might be
many instances of the Scheduler running concurrently, each a subset of tasks. Similarly, the system
could run multiple instances of each Agent, or even multiple Supervisors. In this case, Supervisors
must coordinate their work with each other carefully to ensure that they don’t compete to recover
the same failed steps and tasks. The Leader Election pattern provides one possible solution to this
problem.

When the application is ready to run a task, it submits a request to the Scheduler. The Scheduler
records initial state information about the task and its steps (for example, step not yet started) in
the state store and then starts performing the operations defined by the workflow. As the Scheduler
starts each step, it updates the information about the state of that step in the state store (for
example, step running).

If a step references a remote service or resource, the Scheduler sends a message to the appropriate
Agent. The message contains the information that the Agent needs to pass to the service or access
the resource, in addition to the complete-by time for the operation. If the Agent completes its
operation successfully, it returns a response to the Scheduler. The Scheduler can then update the
state information in the state store (for example, step completed) and perform the next step. This
process continues until the entire task is complete.

An Agent can implement any retry logic that’s necessary to perform its work. However, if the Agent
doesn’t complete its work before the complete-by period expires, the Scheduler will assume that the
operation has failed. In this case, the Agent should stop its work and not try to return anything to the
Scheduler (not even an error message), or try any form of recovery. The reason for this restriction is
that, after a step has timed out or failed, another instance of the Agent might be scheduled to run
the failing step (this process is described later).

If the Agent fails, the Scheduler won’t receive a response. The pattern doesn’t make a distinction
between a step that has timed out and one that has genuinely failed.

If a step times out or fails, the state store will contain a record that indicates that the step is running,
but the complete-by time will have passed. The Supervisor looks for steps like this and tries to
recover them. One possible strategy is for the Supervisor to update the complete-by value to extend
the time available to complete the step, and then send a message to the Scheduler identifying the
step that has timed out. The Scheduler can then try to repeat this step. However, this design requires
the tasks to be idempotent.

The Supervisor might need to prevent the same step from being retried if it continually fails or
times out. To do this, the Supervisor could maintain a retry count for each step, along with the state
information, in the state store. If this count exceeds a predefined threshold the Supervisor can adopt
a strategy of waiting for an extended period before notifying the Scheduler that it should retry the
step, in the expectation that the fault will be resolved during this period. Alternatively, the Supervisor
can send a message to the Scheduler to request the entire task be undone by implementing
a Compensating Transaction pattern. This approach will depend on the Scheduler and Agents
providing the information necessary to implement the compensating operations for each step that
completed successfully.

It isn’t the purpose of the Supervisor to monitor the Scheduler and Agents, and restart them if they
fail. This aspect of the system should be handled by the infrastructure these components are running
in. Similarly, the Supervisor shouldn’t have knowledge of the actual business operations that the tasks
being performed by the Scheduler are running (including how to compensate should these tasks fail).
This is the purpose of the workflow logic implemented by the Scheduler. The sole responsibility of the
Supervisor is to determine whether a step has failed and arrange either for it to be repeated or for
the entire task containing the failed step to be undone.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/leader-election
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction

230

If the Scheduler is restarted after a failure, or the workflow being performed by the Scheduler
terminates unexpectedly, the Scheduler should be able to determine the status of any inflight
task that it was handling when it failed, and be prepared to resume this task from that point. The
implementation details of this process are likely to be system specific. If the task can’t be recovered,
it might be necessary to undo the work already performed by the task. This might also require
implementing a compensating transaction.

The key advantage of this pattern is that the system is resilient in the event of unexpected temporary
or unrecoverable failures. The system can be constructed to be self healing. For example, if an
Agent or the Scheduler fails, a new one can be started and the Supervisor can arrange for a task
to be resumed. If the Supervisor fails, another instance can be started and can take over from
where the failure occurred. If the Supervisor is scheduled to run periodically, a new instance can be
automatically started after a predefined interval. The state store can be replicated to reach an even
greater degree of resiliency.

Issues and considerations
You should consider the following points when deciding how to implement this pattern:

This pattern can be difficult to implement and requires thorough testing of each possible failure
mode of the system.

The recovery/retry logic implemented by the Scheduler is complex and dependent on state
information held in the state store. It might also be necessary to record the information required
to implement a compensating transaction in a durable data store.

How often the Supervisor runs will be important. It should run often enough to prevent any
failed steps from blocking an application for an extended period, but it shouldn’t run so often
that it becomes an overhead.

The steps performed by an Agent could be run more than once. The logic that implements these
steps should be idempotent.

•

•

•

•

Use this pattern when a process that runs in a distributed environment, such as the cloud, must be
resilient to communications failure and/or operational failure.

This pattern might not be suitable for tasks that don’t invoke remote services or access remote
resources.

A web application that implements an ecommerce system has been deployed on Microsoft Azure.
Users can run this application to browse the available products and to place orders. The user
interface runs as a web role, and the order processing elements of the application are implemented
as a set of worker roles. Part of the order processing logic involves accessing a remote service, and
this aspect of the system could be prone to transient or more long-lasting faults. For this reason, the
designers used the Scheduler Agent Supervisor pattern to implement the order processing elements
of the system.

When to use this pattern

Example

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction

231

When a customer places an order, the application constructs a message that describes the order and
posts this message to a queue. A separate submission process, running in a worker role, retrieves
the message, inserts the order details into the orders database, and creates a record for the order
process in the state store. Note that the inserts into the orders database and the state store are
performed as part of the same operation. The submission process is designed to ensure that both
inserts complete together.

The state information that the submission process creates for the order includes:

OrderID. The ID of the order in the orders database.

LockedBy. The instance ID of the worker role handling the order. There might be multiple current
instances of the worker role running the Scheduler, but each order should only be handled by a
single instance.

CompleteBy. The time the order should be processed by.

ProcessState. The current state of the task handling the order. The possible states are:

• Pending. The order has been created but processing hasn’t yet been started.

• Processing. The order is currently being processed.

• Processed. The order has been processed successfully.

• Error. The order processing has failed.

FailureCount. The number of times that processing has been tried for the order.

•
•

•
•

•

In this state information, the OrderID field is copied from the order ID of the new order. The LockedBy
and CompleteBy fields are set to null, the ProcessState field is set to Pending, and the FailureCount
field is set to 0.

In this example, the order handling logic is relatively simple and only has a single step that invokes
a remote service. In a more complex multistep scenario, the submission process would likely involve
several steps, and so several records would be created in the state store—each one describing the
state of an individual step.

The Scheduler also runs as part of a worker role and implements the business logic that handles
the order. An instance of the Scheduler polling for new orders examines the state store for records
where the LockedBy field is null and the ProcessState field is pending. When the Scheduler finds a
new order, it immediately populates the LockedBy field with its own instance ID, sets the CompleteBy
field to an appropriate time, and sets the ProcessState field to processing. The code is designed to be
exclusive and atomic to ensure that two concurrent instances of the Scheduler can’t try to handle the
same order simultaneously.

The Scheduler then runs the business workflow to process the order asynchronously, passing it the
value in the OrderID field from the state store. The workflow handling the order retrieves the details
of the order from the orders database and performs its work. When a step in the order processing
workflow needs to invoke the remote service, it uses an Agent. The workflow step communicates with
the Agent using a pair of Azure Service Bus message queues acting as a request/response channel.
The figure shows a high level view of the solution.

CHAPTER 6 | Catalog of patterns

232

The message sent to the Agent from a workflow step describes the order and includes the complete-
by time. If the Agent receives a response from the remote service before the complete-by time
expires, it posts a reply message on the Service Bus queue on which the workflow is listening. When
the workflow step receives the valid reply message, it completes its processing and the Scheduler
sets the `ProcessState field of the order state to processed. At this point, the order processing has
completed successfully.

If the complete-by time expires before the Agent receives a response from the remote service,
the Agent simply halts its processing and terminates handling the order. Similarly, if the workflow
handling the order exceeds the complete-by time, it also terminates. In both cases, the state of the
order in the state store remains set to processing, but the complete-by time indicates that the time
for processing the order has passed and the process is deemed to have failed. Note that if the Agent
that’s accessing the remote service, or the workflow that’s handling the order (or both) terminate
unexpectedly, the information in the state store will again remain set to processing and eventually
will have an expired complete-by value.

If the Agent detects an unrecoverable, nontransient fault while it’s trying to contact the remote

CHAPTER 6 | Catalog of patterns

233

service, it can send an error response back to the workflow. The Scheduler can set the status of the
order to error and raise an event that alerts an operator. The operator can then try to resolve the
reason for the failure manually and resubmit the failed processing step.

The Supervisor periodically examines the state store looking for orders with an expired complete-by
value. If the Supervisor finds a record, it increments the FailureCount field. If the failure count value
is below a specified threshold value, the Supervisor resets the LockedBy field to null, updates the
CompleteBy field with a new expiration time, and sets the ProcessState field to pending. An instance
of the Scheduler can pick up this order and perform its processing as before. If the failure count
value exceeds a specified threshold, the reason for the failure is assumed to be nontransient. The
Supervisor sets the status of the order to error and raises an event that alerts an operator.

In this example, the Supervisor is implemented in a separate worker role. You can use a variety of
strategies to arrange for the Supervisor task to be run, including using the Azure Scheduler service
(not to be confused with the Scheduler component in this pattern). For more information about the
Azure Scheduler service, visit the Scheduler page.

Although it isn’t shown in this example, the Scheduler might need to keep the application that
submitted the order informed about the progress and status of the order. The application and the
Scheduler are isolated from each other to eliminate any dependencies between them. The application
has no knowledge of which instance of the Scheduler is handling the order, and the Scheduler is
unaware of which specific application instance posted the order.

To allow the order status to be reported, the application could use its own private response queue.
The details of this response queue would be included as part of the request sent to the submission
process, which would include this information in the state store. The Scheduler would then post
messages to this queue indicating the status of the order (request received, order completed, order
failed, and so on). It should include the order ID in these messages so they can be correlated with the
original request by the application.

Related patterns and guidance

The following patterns and guidance might also be relevant when implementing this pattern:
Retry pattern. An Agent can use this pattern to transparently retry an operation that accesses a
remote service or resource that has previously failed. Use when the expectation is that the cause
of the failure is transient and can be corrected.

Circuit Breaker pattern. An Agent can use this pattern to handle faults that take a variable amount
of time to correct when connecting to a remote service or resource.

Compensating Transaction pattern. If the workflow being performed by a Scheduler can’t be
completed successfully, it might be necessary to undo any work it’s previously performed. The
Compensating Transaction pattern describes how this can be achieved for operations that follow
the eventual consistency model. These types of operations are commonly implemented by a
Scheduler that performs complex business processes and workflows.

Asynchronous Messaging Primer. The components in the Scheduler Agent Supervisor pattern
typically run decoupled from each other and communicate asynchronously. Describes some of
the approaches that can be used to implement asynchronous communication based on message
queues.

Leader Election pattern. It might be necessary to coordinate the actions of multiple instances of

•

•

•

•

•

CHAPTER 6 | Catalog of patterns

https://azure.microsoft.com/en-us/services/scheduler/
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://docs.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://msdn.microsoft.com/library/dn589781.aspx
https://docs.microsoft.com/en-us/azure/architecture/patterns/leader-election

234

a Supervisor to prevent them from attempting to recover the same failed process. The Leader
Election pattern describes how to do this.

Cloud Architecture: The Scheduler-Agent-Supervisor Pattern on Clemens Vasters’ blog

Process Manager pattern

Reference 6: A Saga on Sagas. An example showing how the CQRS pattern uses a process
manager (part of the CQRS Journey guidance).

Microsoft Azure Scheduler

•
•
•

•

•

•

•

•

Context and problem

Sharding pattern
Divide a data store into a set of horizontal partitions or shards. This can improve scalability when
storing and accessing large volumes of data.

A data store hosted by a single server might be subject to the following limitations:

Storage space. A data store for a large-scale cloud application is expected to contain a huge
volume of data that could increase significantly over time. A server typically provides only a finite
amount of disk storage, but you can replace existing disks with larger ones, or add further disks
to a machine as data volumes grow. However, the system will eventually reach a limit where it
isn’t possible to easily increase the storage capacity on a given server.

Computing resources. A cloud application is required to support a large number of concurrent
users, each of which run queries that retrieve information from the data store. A single server
hosting the data store might not be able to provide the necessary computing power to support
this load, resulting in extended response times for users and frequent failures as applications
attempting to store and retrieve data time out. It might be possible to add memory or upgrade
processors, but the system will reach a limit when it isn’t possible to increase the compute
resources any further.

Network bandwidth. Ultimately, the performance of a data store running on a single server
is governed by the rate the server can receive requests and send replies. It’s possible that the
volume of network traffic might exceed the capacity of the network used to connect to the
server, resulting in failed requests.

Geography. It might be necessary to store data generated by specific users in the same region
as those users for legal, compliance, or performance reasons, or to reduce latency of data access.
If the users are dispersed across different countries or regions, it might not be possible to store
the entire data for the application in a single data store.

Scaling vertically by adding more disk capacity, processing power, memory, and network connections
can postpone the effects of some of these limitations, but it’s likely to only be a temporary solution.
A commercial cloud application capable of supporting large numbers of users and high volumes of
data must be able to scale almost indefinitely, so vertical scaling isn’t necessarily the best solution.

CHAPTER 6 | Catalog of patterns

https://blogs.msdn.microsoft.com/clemensv/2010/09/27/cloud-architecture-the-scheduler-agent-supervisor-pattern/
http://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html
https://msdn.microsoft.com/library/jj591569.aspx
https://azure.microsoft.com/en-us/services/scheduler/

235

Solution

Divide the data store into horizontal partitions or shards. Each shard has the same schema, but holds
its own distinct subset of the data. A shard is a data store in its own right (it can contain the data for
many entities of different types), running on a server acting as a storage node.

This pattern has the following benefits:
You can scale the system out by adding further shards running on additional storage nodes.

A system can use off-the-shelf hardware rather than specialized and expensive computers for
each storage node.

You can reduce contention and improve performance by balancing the workload across shards.

In the cloud, shards can be located physically close to the users that’ll access the data.

When dividing a data store up into shards, decide which data should be placed in each shard. A shard
typically contains items that fall within a specified range determined by one or more attributes of the
data. These attributes form the shard key (sometimes referred to as the partition key). The shard key
should be static. It shouldn’t be based on data that might change.

Sharding physically organizes the data. When an application stores and retrieves data, the sharding
logic directs the application to the appropriate shard. This sharding logic can be implemented as part
of the data access code in the application, or it could be implemented by the data storage system if it
transparently supports sharding.

Abstracting the physical location of the data in the sharding logic provides a high level of control
over which shards contain which data. It also enables data to migrate between shards without
reworking the business logic of an application if the data in the shards need to be redistributed later
(for example, if the shards become unbalanced). The tradeoff is the additional data access overhead
required in determining the location of each data item as it’s retrieved.

To ensure optimal performance and scalability, it’s important to split the data in a way that’s
appropriate for the types of queries that the application performs. In many cases, it’s unlikely that the
sharding scheme will exactly match the requirements of every query. For example, in a multi-tenant
system an application might need to retrieve tenant data using the tenant ID, but it might also need
to look up this data based on some other attribute such as the tenant’s name or location. To handle
these situations, implement a sharding strategy with a shard key that supports the most commonly
performed queries.

If queries regularly retrieve data using a combination of attribute values, you can likely define a
composite shard key by linking attributes together. Alternatively, use a pattern such as Index Table to
provide fast lookup to data based on attributes that aren’t covered by the shard key.

•
•

•
•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/index-table

236

Sharding strategies
Three strategies are commonly used when selecting the shard key and deciding how to distribute
data across shards. Note that there doesn’t have to be a one-to-one correspondence between shards
and the servers that host them—a single server can host multiple shards. The strategies are:

The Lookup strategy. In this strategy the sharding logic implements a map that routes a request
for data to the shard that contains that data using the shard key. In a multi-tenant application all the
data for a tenant might be stored together in a shard using the tenant ID as the shard key. Multiple
tenants might share the same shard, but the data for a single tenant won’t be spread across multiple
shards. The figure illustrates sharding tenant data based on tenant IDs.

The mapping between the shard key and the physical storage can be based on physical shards where
each shard key maps to a physical partition. Alternatively, a more flexible technique for rebalancing
shards is virtual partitioning, where shard keys map to the same number of virtual shards, which in
turn map to fewer physical partitions. In this approach, an application locates data using a shard key
that refers to a virtual shard, and the system transparently maps virtual shards to physical partitions.
The mapping between a virtual shard and a physical partition can change without requiring the
application code be modified to use a different set of shard keys.

The Range strategy. This strategy groups related items together in the same shard, and orders them
by shard key—the shard keys are sequential. It’s useful for applications that frequently retrieve sets
of items using range queries (queries that return a set of data items for a shard key that falls within a
given range). For example, if an application regularly needs to find all orders placed in a given month,
this data can be retrieved more quickly if all orders for a month are stored in date and time order in
the same shard. If each order was stored in a different shard, they’d have to be fetched individually by
performing a large number of point queries (queries that return a single data item). The next figure
illustrates storing sequential sets (ranges) of data in shard.

CHAPTER 6 | Catalog of patterns

237

In this example, the shard key is a composite key containing the order month as the most significant
element, followed by the order day and the time. The data for orders is naturally sorted when new
orders are created and added to a shard. Some data stores support two-part shard keys containing
a partition key element that identifies the shard and a row key that uniquely identifies an item in the
shard. Data is usually held in row key order in the shard. Items that are subject to range queries and
need to be grouped together can use a shard key that has the same value for the partition key but a
unique value for the row key.

The Hash strategy. The purpose of this strategy is to reduce the chance of hotspots (shards that
receive a disproportionate amount of load). It distributes the data across the shards in a way
that achieves a balance between the size of each shard and the average load that each shard will
encounter. The sharding logic computes the shard to store an item in based on a hash of one or more
attributes of the data. The chosen hashing function should distribute data evenly across the shards,
possibly by introducing some random element into the computation. The next figure illustrates
sharding tenant data based on a hash of tenant IDs.

CHAPTER 6 | Catalog of patterns

238

To understand the advantage of the Hash strategy over other sharding strategies, consider how a
multi-tenant application that enrolls new tenants sequentially might assign the tenants to shards
in the data store. When using the Range strategy, the data for tenants 1 to n will all be stored in
shard A, the data for tenants n+1 to m will all be stored in shard B, and so on. If the most recently
registered tenants are also the most active, most data activity will occur in a small number of shards,
which could cause hotspots. In contrast, the Hash strategy allocates tenants to shards based on a
hash of their tenant ID. This means that sequential tenants are most likely to be allocated to different
shards, which will distribute the load across them. The previous figure shows this for tenants 55 and
56.

Lookup. This offers more control over the way that shards are configured and used. Using virtual
shards reduces the impact when rebalancing data because new physical partitions can be added
to even out the workload. The mapping between a virtual shard and the physical partitions that
implement the shard can be modified without affecting application code that uses a shard key to
store and retrieve data. Looking up shard locations can impose an additional overhead.

Range. This is easy to implement and works well with range queries because they can often fetch
multiple data items from a single shard in a single operation. This strategy offers easier data
management. For example, if users in the same region are in the same shard, updates can be
scheduled in each time zone based on the local load and demand pattern. However, this strategy
doesn’t provide optimal balancing between shards. Rebalancing shards is difficult and might not
resolve the problem of uneven load if the majority of activity is for adjacent shard keys.

Hash. This strategy offers a better chance of more even data and load distribution. Request
routing can be accomplished directly by using the hash function. There’s no need to maintain
a map. Note that computing the hash might impose an additional overhead. Also, rebalancing
shards is difficult.

The three sharding strategies have the following advantages and considerations:

Most common sharding systems implement one of the approaches described above, but you should
also consider the business requirements of your applications and their patterns of data usage. For
example, in a multi-tenant application:

•

•

•

•

•

•

•

You can shard data based on workload. You could segregate the data for highly volatile tenants
in separate shards. The speed of data access for other tenants might be improved as a result.

You can shard data based on the location of tenants. You can take the data for tenants in a
specific geographic region offline for backup and maintenance during off-peak hours in that
region, while the data for tenants in other regions remains online and accessible during their
business hours.

High-value tenants could be assigned their own private, high performing, lightly loaded shards,
whereas lower-value tenants might be expected to share more densely-packed, busy shards.
The data for tenants that need a high degree of data isolation and privacy can be stored on a
completely separate server.

The data for tenants that need a high degree of data isolation and privacy can be stored on a
completely separate server.

CHAPTER 6 | Catalog of patterns

239

Scaling and data movement operations
Each of the sharding strategies implies different capabilities and levels of complexity for managing
scale in, scale out, data movement, and maintaining state.

The Lookup strategy permits scaling and data movement operations to be carried out at the user
level, either online or offline. The technique is to suspend some or all user activity (perhaps during
off-peak periods), move the data to the new virtual partition or physical shard, change the mappings,
invalidate or refresh any caches that hold this data, and then allow user activity to resume. Often
this type of operation can be centrally managed. The Lookup strategy requires state to be highly
cacheable and replica friendly.

The Range strategy imposes some limitations on scaling and data movement operations, which must
typically be carried out when a part or all of the data store is offline because the data must be split
and merged across the shards. Moving the data to rebalance shards might not resolve the problem
of uneven load if the majority of activity is for adjacent shard keys or data identifiers that are within
the same range. The Range strategy might also require some state to be maintained in order to map
ranges to the physical partitions.

The Hash strategy makes scaling and data movement operations more complex because the
partition keys are hashes of the shard keys or data identifiers. The new location of each shard must
be determined from the hash function, or the function modified to provide the correct mappings.
However, the Hash strategy doesn’t require maintenance of state.

Issues and considerations
Consider the following points when deciding how to implement this pattern:

Sharding is complementary to other forms of partitioning, such as vertical partitioning and
functional partitioning. For example, a single shard can contain entities that have been
partitioned vertically, and a functional partition can be implemented as multiple shards. For more
information about partitioning, see the Data Partitioning Guidance.

Keep shards balanced so they all handle a similar volume of I/O. As data is inserted and deleted,
it’s necessary to periodically rebalance the shards to guarantee an even distribution and to
reduce the chance of hotspots. Rebalancing can be an expensive operation. To reduce the
necessity of rebalancing, plan for growth by ensuring that each shard contains sufficient free
space to handle the expected volume of changes. You should also develop strategies and scripts
you can use to quickly rebalance shards if this becomes necessary.

Use stable data for the shard key. If the shard key changes, the corresponding data item might
have to move between shards, increasing the amount of work performed by update operations.
For this reason, avoid basing the shard key on potentially volatile information. Instead, look for
attributes that are invariant or that naturally form a key.

Ensure that shard keys are unique. For example, avoid using autoincrementing fields as the
shard key. Is some systems, autoincremented fields can’t be coordinated across shards, possibly
resulting in items in different shards having the same shard key.

• Autoincremented values in other fields that are not shard keys can also cause problems.
For example, if you use autoincremented fields to generate unique IDs, then two
different items located in different shards might be assigned the same ID.

•

•

•

•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning

240

It might not be possible to design a shard key that matches the requirements of
every possible query against the data. Shard the data to support the most frequently
performed queries, and if necessary create secondary index tables to support queries
that retrieve data using criteria based on attributes that aren’t part of the shard key. For
more information, see the Index Table pattern.

Queries that access only a single shard are more efficient than those that retrieve data from
multiple shards, so avoid implementing a sharding system that results in applications performing
large numbers of queries that join data held in different shards. Remember that a single shard
can contain the data for multiple types of entities. Consider denormalizing your data to keep
related entities that are commonly queried together (such as the details of customers and the
orders that they have placed) in the same shard to reduce the number of separate reads that an
application performs.

• If an entity in one shard references an entity stored in another shard, include the shard
key for the second entity as part of the schema for the first entity. This can help to
improve the performance of queries that reference related data across shards.

If an application must perform queries that retrieve data from multiple shards, it might be
possible to fetch this data by using parallel tasks. Examples include fan-out queries, where data
from multiple shards is retrieved in parallel and then aggregated into a single result. However,
this approach inevitably adds some complexity to the data access logic of a solution.

For many applications, creating a larger number of small shards can be more efficient than
having a small number of large shards because they can offer increased opportunities for load
balancing. This can also be useful if you anticipate the need to migrate shards from one physical
location to another. Moving a small shard is quicker than moving a large one.

Make sure the resources available to each shard storage node are sufficient to handle the
scalability requirements in terms of data size and throughput. For more information, see the
section “Designing Partitions for Scalability” in the Data Partitioning Guidance.

Consider replicating reference data to all shards. If an operation that retrieves data from a shard
also references static or slow-moving data as part of the same query, add this data to the shard.
The application can then fetch all of the data for the query easily, without having to make an
additional round trip to a separate data store.

• If reference data held in multiple shards changes, the system must synchronize these
changes across all shards. The system can experience a degree of inconsistency while this
synchronization occurs. If you do this, you should design your applications to be able to
handle it.

It can be difficult to maintain referential integrity and consistency between shards, so you should
minimize operations that affect data in multiple shards. If an application must modify data across
shards, evaluate whether complete data consistency is actually required. Instead, a common
approach in the cloud is to implement eventual consistency. The data in each partition is updated
separately, and the application logic must take responsibility for ensuring that the updates all
complete successfully, as well as handling the inconsistencies that can arise from querying data
while an eventually consistent operation is running. For more information about implementing
eventual consistency, see the Data Consistency Primer.

Configuring and managing a large number of shards can be a challenge. Tasks such as
monitoring, backing up, checking for consistency, and logging or auditing must be accomplished
on multiple shards and servers, possibly held in multiple locations. These tasks are likely to

•

•

•

•

•

•

•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/index-table
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://msdn.microsoft.com/library/dn589800.aspx

241

be implemented using scripts or other automation solutions, but that might not completely
eliminate the additional administrative requirements.

Shards can be geolocated so that the data that they contain is close to the instances of an
application that use it. This approach can considerably improve performance, but requires
additional consideration for tasks that must access multiple shards in different locations.

•

When to use this pattern

Example

Use this pattern when a data store is likely to need to scale beyond the resources available to a single
storage node, or to improve performance by reducing contention in a data store.

The primary focus of sharding is to improve the performance and scalability of a system, but as a
by-product it can also improve availability due to how the data is divided into separate partitions.
A failure in one partition doesn’t necessarily prevent an application from accessing data held in
other partitions, and an operator can perform maintenance or recovery of one or more partitions
without making the entire data for an application inaccessible. For more information, see the Data
Partitioning Guidance.

The following example in C# uses a set of SQL Server databases acting as shards. Each database
holds a subset of the data used by an application. The application retrieves data that’s distributed
across the shards using its own sharding logic (this is an example of a fan-out query). The details
of the data that’s located in each shard is returned by a method called GetShards. This method
returns an enumerable list of ShardInformation objects, where the ShardInformation type contains
an identifier for each shard and the SQL Server connection string that an application should use to
connect to the shard (the connection strings aren’t shown in the code example).

private IEnumerable<ShardInformation> GetShards()
{
 // This retrieves the connection information from a shard store
 // (commonly a root database).
 return new[]
 {
 new ShardInformation
 {
 Id = 1,
 ConnectionString = ...
 },
 new ShardInformation
 {
 Id = 2,
 ConnectionString = ...
 }
 };
}

The code below shows how the application uses the list of ShardInformation objects to perform
a query that fetches data from each shard in parallel. The details of the query aren’t shown, but
in this example the data that’s retrieved contains a string that could hold information such as the
name of a customer if the shards contain the details of customers. The results are aggregated into a
ConcurrentBag collection for processing by the application.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning

242

// Retrieve the shards as a ShardInformation[] instance.
var shards = GetShards();

var results = new ConcurrentBag<string>();

// Execute the query against each shard in the shard list.
// This list would typically be retrieved from configuration
// or from a root/master shard store.
Parallel.ForEach(shards, shard =>
{
 // NOTE: Transient fault handling isn’t included,
 // but should be incorporated when used in a real world application.
 using (var con = new SqlConnection(shard.ConnectionString))
 {
 con.Open();
 var cmd = new SqlCommand(“SELECT ... FROM ...”, con);

 Trace.TraceInformation(“Executing command against shard: {0}”, shard.Id);

 var reader = cmd.ExecuteReader();
 // Read the results in to a thread-safe data structure.
 while (reader.Read())
 {
 results.Add(reader.GetString(0));
 }
 }
});

Trace.TraceInformation(“Fanout query complete - Record Count: {0}”,
 results.Count);

Related patterns and guidance
The following patterns and guidance may also be relevant when implementing this pattern:

Data Consistency Primer. It might be necessary to maintain consistency for data distributed
across different shards. Summarizes the issues surrounding maintaining consistency over
distributed data, and describes the benefits and tradeoffs of different consistency models.

Data Partitioning Guidance. Sharding a data store can introduce a range of additional issues.
Describes these issues in relation to partitioning data stores in the cloud to improve scalability,
reduce contention, and optimize performance.

Index Table pattern. Sometimes it isn’t possible to completely support queries just through the
design of the shard key. Enables an application to quickly retrieve data from a large data store by
specifying a key other than the shard key.

Materialized View pattern. To maintain the performance of some query operations, it’s useful to
create materialized views that aggregate and summarize data, especially if this summary data is
based on information that’s distributed across shards. Describes how to generate and populate
these views.

Shard Lessons on the Adding Simplicity blog.

Database Sharding on the CodeFutures web site.

Scalability Strategies Primer: Database Sharding on Max Indelicato’s blog.

Building Scalable Databases: Pros and Cons of Various Database Sharding Schemes on Dare
Obasanjo’s blog.

•

•

•

•

•
•
•

•

CHAPTER 6 | Catalog of patterns

https://msdn.microsoft.com/library/dn589800.aspx
https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning
https://docs.microsoft.com/en-us/azure/architecture/patterns/index-table
https://docs.microsoft.com/en-us/azure/architecture/patterns/materialized-view
http://www.addsimplicity.com/adding_simplicity_an_engi/2008/08/shard-lessons.html
http://www.agildata.com/database-sharding/
http://blog.maxindelicato.com/2008/12/scalability-strategies-primer-database-sharding.html
http://www.25hoursaday.com/weblog/2009/01/16/BuildingScalableDatabasesProsAndConsOfVariousDatabaseShardingSchemes.aspx

243

Context and Problem

Solution

Sidecar pattern
Deploy components of an application into a separate process or container to provide isolation
and encapsulation. This pattern can also enable applications to be composed of heterogeneous
components and technologies.

This pattern is named Sidecar because it resembles a sidecar attached to a motorcycle. In the pattern,
the sidecar is attached to a parent application and provides supporting features for the application.
The sidecar also shares the same lifecycle as the parent application, being created and retired
alongside the parent. The sidecar pattern is sometimes referred to as the sidekick pattern and is a
decomposition pattern.

Applications and services often require related functionality, such as monitoring, logging,
configuration, and networking services. These peripheral tasks can be implemented as separate
components or services.

If they are tightly integrated into the application, they can run in the same process as the application,
making efficient use of shared resources. However, this also means they are not well isolated, and an
outage in one of these components can affect other components or the entire application. Also, they
usually need to be implemented using the same language as the parent application. As a result, the
component and the application have close interdependence on each other.

If the application is decomposed into services, then each service can be built using different
languages and technologies. While this gives more flexibility, it means that each component has
its own dependencies and requires language-specific libraries to access the underlying platform
and any resources shared with the parent application. In addition, deploying these features as
separate services can add latency to the application. Managing the code and dependencies for
these language-specific interfaces can also add considerable complexity, especially for hosting,
deployment, and management.

Co-locate a cohesive set of tasks with the primary application, but place them inside their own
process or container, providing a homogeneous interface for platform services across languages.

CHAPTER 6 | Catalog of patterns

244

A sidecar service is not necessarily part of the application, but is connected to it. It goes wherever
the parent application goes. Sidecars are supporting processes or services that are deployed with the
primary application. On a motorcycle, the sidecar is attached to one motorcycle, and each motorcycle
can have its own sidecar. In the same way, a sidecar service shares the fate of its parent application.
For each instance of the application, an instance of the sidecar is deployed and hosted alongside it.

Advantages of using a sidecar pattern include:
A sidecar is independent from its primary application in terms of runtime environment and
programming language, so you don’t need to develop one sidecar per language.

The sidecar can access the same resources as the primary application. For example, a sidecar can
monitor system resources used by both the sidecar and the primary application.

Because of its proximity to the primary application, there’s no significant latency when
communicating between them.

Even for applications that don’t provide an extensibility mechanism, you can use a sidecar to
extend functionality by attaching it as own process in the same host or sub-container as the
primary application.

The sidecar pattern is often used with containers and referred to as a sidecar container or sidekick
container.

•

•

•

•

•

•

•

•

•

•
•

•

Issues and Considerations

When to Use this Pattern

Consider the deployment and packaging format you will use to deploy services, processes, or
containers. Containers are particularly well suited to the sidecar pattern.

When designing a sidecar service, carefully decide on the interprocess communication
mechanism. Try to use language- or framework-agnostic technologies unless performance
requirements make that impractical.

Before putting functionality into a sidecar, consider whether it would work better as a separate
service or a more traditional daemon.

Also consider whether the functionality could be implemented as a library or using a traditional
extension mechanism. Language-specific libraries may have a deeper level of integration and less
network overhead.

Use this pattern when:
Your primary application uses a heterogenous set of languages and frameworks. A component
located in a sidecar service can be consumed by applications written in different languages using
different frameworks.

A component is owned by a remote team or a different organization.

A component or feature must be co-located on the same host as the application.

You need a service that shares the overall lifecycle of your main application, but can be

CHAPTER 6 | Catalog of patterns

245

independently updated.

You need fine-grained control over resource limits for a particular resource or component. For
example, you may want to restrict the amount of memory a specific component uses. You can
deploy the component as a sidecar and manage memory usage independently of the main
application.

•

•

•

•

•

•

•

•

This pattern may not be suitable:
When interprocess communication needs to be optimized. Communication between a parent
application and sidecar services includes some overhead, notably latency in the calls. This may
not be an acceptable trade-off for chatty interfaces.

For small applications where the resource cost of deploying a sidecar service for each instance is
not worth the advantage of isolation.

When the service needs to scale differently than or independently from the main applications. If
so, it may be better to deploy the feature as a separate service.

Example

Related guidance

The sidecar pattern is applicable to many scenarios. Some common examples:
Infrastructure API. The infrastructure development team creates a service that’s deployed
alongside each application, instead of a language-specific client library to access the
infrastructure. The service is loaded as a sidecar and provides a common layer for infrastructure
services, including logging, environment data, configuration store, discovery, health checks, and
watchdog services. The sidecar also monitors the parent application’s host environment and
process (or container) and logs the information to a centralized service.

Manage NGINX/HAProxy. Deploy NGINX with a sidecar service that monitors environment state,
then updates the NGINX configuration file and recycles the process when a change in state is
needed.

Ambassador sidecar. Deploy an ambassador service as a sidecar. The application calls through
the ambassador, which handles request logging, routing, circuit breaking, and other connectivity
related features.

Offload proxy. Place an NGINX proxy in front of a node.js service instance, to handle serving
static file content for the service

•	 Ambassador pattern

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/ambassador
https://docs.microsoft.com/en-us/azure/architecture/patterns/ambassador

246

Static Content Hosting pattern
Deploy static content to a cloud-based storage service that can deliver them directly to the client.
This can reduce the need for potentially expensive compute instances.

Context and problem

Solution

Web applications typically include some elements of static content. This static content might include
HTML pages and other resources such as images and documents that are available to the client,
either as part of an HTML page (such as inline images, style sheets, and client-side JavaScript files) or
as separate downloads (such as PDF documents).

Although web servers are well tuned to optimize requests through efficient dynamic page code
execution and output caching, they still have to handle requests to download static content. This
consumes processing cycles that could often be put to better use.

In most cloud hosting environments it’s possible to minimize the need for compute instances (for
example, use a smaller instance or fewer instances), by locating some of an application’s resources
and static pages in a storage service. The cost for cloud-hosted storage is typically much less than for
compute instances.

When hosting some parts of an application in a storage service, the main considerations are related
to deployment of the application and to securing resources that aren’t intended to be available to
anonymous users.

Issues and considerations
Consider the following points when deciding how to implement this pattern:

The hosted storage service must expose an HTTP endpoint that users can access to download
the static resources. Some storage services also support HTTPS, so it’s possible to host resources
in storage services that require SSL.

For maximum performance and availability, consider using a content delivery network (CDN) to
cache the contents of the storage container in multiple datacenters around the world. However,
you’ll likely have to pay for using the CDN.
Storage accounts are often geo-replicated by default to provide resiliency against events that
might affect a datacenter. This means that the IP address might change, but the URL will remain
the same.

When some content is located in a storage account and other content is in a hosted compute
instance it becomes more challenging to deploy an application and to update it. You might have
to perform separate deployments, and version the application and content to manage it more
easily—especially when the static content includes script files or UI components. However, if only
static resources have to be updated, they can simply be uploaded to the storage account without
needing to redeploy the application package.

Storage services might not support the use of custom domain names. In this case it’s necessary

•

•

•

•

CHAPTER 6 | Catalog of patterns

247

to specify the full URL of the resources in links because they’ll be in a different domain from the
dynamically-generated content containing the links.

The storage containers must be configured for public read access, but it’s vital to ensure that
they aren’t configured for public write access to prevent users being able to upload content.
Consider using a valet key or token to control access to resources that shouldn’t be available
anonymously—see the Valet Key pattern for more information.

•

•
•

•

•

•

•

•

When to use this pattern

This pattern is useful for:
Minimizing the hosting cost for websites and applications that contain some static resources.

Minimizing the hosting cost for websites that consist of only static content and resources.
Depending on the capabilities of the hosting provider’s storage system, it might be possible to
entirely host a fully static website in a storage account.

Exposing static resources and content for applications running in other hosting environments or
on-premises servers.

Locating content in more than one geographical area using a content delivery network that
caches the contents of the storage account in multiple datacenters around the world.

Monitoring costs and bandwidth usage. Using a separate storage account for some or all of the
static content allows the costs to be more easily separated from hosting and runtime costs.

This pattern may not be useful in the following situations:
The application needs to perform some processing on the static content before delivering it to
the client. For example, it might be necessary to add a timestamp to a document.

The volume of static content is very small. The overhead of retrieving this content from separate
storage can outweigh the cost benefit of separating it out from the compute resource.

Example
Static content located in Azure Blob storage can be accessed directly by a web browser. Azure
provides an HTTP-based interface over storage that can be publicly exposed to clients. For example,
content in an Azure Blob storage container is exposed using a URL with the following form:

http://[storage-account-name].blob.core.windows.net/[container-name]/[file-name]

When uploading the content it’s necessary to create one or more blob containers to hold the files
and documents. Note that the default permission for a new container is Private, and you must
change this to Public to allow clients to access the contents. If it’s necessary to protect the content
from anonymous access, you can implement the Valet Key pattern so users must present a valid
token to download the resources.

Blob Service Concepts has information about blob storage, and the ways that you can
access and use it.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/valet-key
https://docs.microsoft.com/en-us/azure/architecture/patterns/valet-key
https://docs.microsoft.com/en-us/rest/api/storageservices/Blob-Service-Concepts?redirectedfrom=MSDN

248

The links in each page will specify the URL of the resource and the client will access it directly from
the storage service. The figure illustrates delivering static parts of an application directly from a
storage service.

The links in the pages delivered to the client must specify the full URL of the blob container and
resource. For example, a page that contains a link to an image in a public container might contain the
following HTML.

<img src=”http://mystorageaccount.blob.core.windows.net/myresources/image1.png”
 alt=”My image” />

<Setting name=”StaticContent.StorageConnectionString”
 value=”UseDevelopmentStorage=true” />
<Setting name=”StaticContent.Container” value=”static-content” />

If the resources are protected by using a valet key, such as an Azure shared access signature, this
signature must be included in the URLs in the links.

A solution named StaticContentHosting that demonstrates using external storage for static resources
is available from GitHub. The StaticContentHosting.Cloud project contains configuration files that
specify the storage account and container that holds the static content.

The Settings class in the file Settings.cs of the StaticContentHosting.Web project contains methods to
extract these values and build a string value containing the cloud storage account container URL.

CHAPTER 6 | Catalog of patterns

249

public class Settings
{
 public static string StaticContentStorageConnectionString {
 get
 {
 return RoleEnvironment.GetConfigurationSettingValue(
 “StaticContent.StorageConnectionString”);
 }
 }

 public static string StaticContentContainer
 {
 get
 {
 return RoleEnvironment.GetConfigurationSettingValue(“StaticContent.Container”);
 }
 }

 public static string StaticContentBaseUrl
 {
 get
 {
 var account = CloudStorageAccount.Parse(StaticContentStorageConnectionString);

 return string.Format(“{0}/{1}”, account.BlobEndpoint.ToString().TrimEnd(‘/’),
 StaticContentContainer.TrimStart(‘/’));
 }
 }
}

public static class StaticContentUrlHtmlHelper
{
 public static string StaticContentUrl(this HtmlHelper helper, string contentPath)
 {
 if (contentPath.StartsWith(“~”))
 {
 contentPath = contentPath.Substring(1);
 }

 contentPath = string.Format(“{0}/{1}”, Settings.StaticContentBaseUrl.TrimEnd(‘/’),
 contentPath.TrimStart(‘/’));

 var url = new UrlHelper(helper.ViewContext.RequestContext);

 return url.Content(contentPath);
 }
}

The StaticContentUrlHtmlHelper class in the file StaticContentUrlHtmlHelper.cs exposes a method
named StaticContentUrl that generates a URL containing the path to the cloud storage account if the
URL passed to it starts with the ASP.NET root path character (~).

The file Index.cshtml in the Views\Home folder contains an image element that uses the
StaticContentUrl method to create the URL for its src attribute.

CHAPTER 6 | Catalog of patterns

250

Related patterns and guidance

A sample that demonstrates this pattern is available on GitHub.

Valet Key pattern. If the target resources aren’t supposed to be available to anonymous users
it’s necessary to implement security over the store that holds the static content. Describes how
to use a token or key that provides clients with restricted direct access to a specific resource or
service such as a cloud-hosted storage service.

An efficient way of deploying a static web site on Azure on the Infosys blog.

Blob Service Concepts

•
•

•

•

Strangler pattern
Incrementally migrate a legacy system by gradually replacing specific pieces of functionality with new
applications and services. As features from the legacy system are replaced, the new system eventually
replaces all of the old system’s features, strangling the old system and allowing you to decommission
it.

Context and problem

Solution

As systems age, the development tools, hosting technology, and even system architectures they
were built on can become increasingly obsolete. As new features and functionality are added, the
complexity of these applications can increase dramatically, making them harder to maintain or add
new features to.

Completely replacing a complex system can be a huge undertaking. Often, you will need a gradual
migration to a new system, while keeping the old system to handle features that haven’t been
migrated yet. However, running two separate versions of an application means that clients have to
know where particular features are located. Every time a feature or service is migrated, clients need
to be updated to point to the new location.

Incrementally replace specific pieces of functionality with new applications and services. Create a
façade that intercepts requests going to the backend legacy system. The façade routes these requests
either to the legacy application or the new services. Existing features can be migrated to the new
system gradually, and consumers can continue using the same interface, unaware that any migration
has taken place.

CHAPTER 6 | Catalog of patterns

https://github.com/mspnp/cloud-design-patterns/tree/master/static-content-hosting
https://docs.microsoft.com/en-us/azure/architecture/patterns/valet-key
http://www.infosysblogs.com/microsoft/2010/06/an_efficient_way_of_deploying.html
https://docs.microsoft.com/en-us/rest/api/storageservices/Blob-Service-Concepts?redirectedfrom=MSDN

251

This pattern helps to minimize risk from the migration, and spread the development effort over time.
With the façade safely routing users to the correct application, you can add functionality to the new
system at whatever pace you like, while ensuring the legacy application continues to function. Over
time, as features are migrated to the new system, the legacy system is eventually “strangled” and is
no longer necessary. Once this process is complete, the legacy system can safely be retired.

Issues and considerations

When to use this pattern

Consider how to handle services and data stores that are potentially used by both new and
legacy systems. Make sure both can access these resources side-by-side.

Structure new applications and services in a way that they can easily be intercepted and replaced
in future strangler migrations.

At some point, when the migration is complete, the strangler façade will either go away or evolve
into an adaptor for legacy clients.

Make sure the façade keeps up with the migration.

Make sure the façade doesn’t become a single point of failure or a performance bottleneck.

Use this pattern when gradually migrating a back-end application to a new architecture.

This pattern may not be suitable:

When requests to the back-end system cannot be intercepted.

For smaller systems where the complexity of wholesale replacement is low.

•

•

•

•
•

•
•

CHAPTER 6 | Catalog of patterns

252

Related guidance

Anti-Corruption Layer pattern

Gateway Routing pattern

•
•

Throttling pattern
Control the consumption of resources used by an instance of an application, an individual tenant,
or an entire service. This can allow the system to continue to function and meet service level
agreements, even when an increase in demand places an extreme load on resources.

Context and problem

Solution

The load on a cloud application typically varies over time based on the number of active users or the
types of activities they are performing. For example, more users are likely to be active during business
hours, or the system might be required to perform computationally expensive analytics at the end
of each month. There might also be sudden and unanticipated bursts in activity. If the processing
requirements of the system exceed the capacity of the resources that are available, it’ll suffer from
poor performance and can even fail. If the system has to meet an agreed level of service, such failure
could be unacceptable.

There’re many strategies available for handling varying load in the cloud, depending on the business
goals for the application. One strategy is to use autoscaling to match the provisioned resources to
the user needs at any given time. This has the potential to consistently meet user demand, while
optimizing running costs. However, while autoscaling can trigger the provisioning of additional
resources, this provisioning isn’t immediate. If demand grows quickly, there can be a window of time
where there’s a resource deficit.

An alternative strategy to autoscaling is to allow applications to use resources only up to a limit, and
then throttle them when this limit is reached. The system should monitor how it’s using resources
so that, when usage exceeds the threshold, it can throttle requests from one or more users. This will
enable the system to continue functioning and meet any service level agreements (SLAs) that are in
place. For more information on monitoring resource usage, see the Instrumentation and Telemetry
Guidance.

The system could implement several throttling strategies, including:

Rejecting requests from an individual user who’s already accessed system APIs more than n times
per second over a given period of time. This requires the system to meter the use of resources
for each tenant or user running an application. For more information, see the Service Metering
Guidance.

Disabling or degrading the functionality of selected nonessential services so that essential
services can run unimpeded with sufficient resources. For example, if the application is streaming
video output, it could switch to a lower resolution.

•

•

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring
https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring
https://msdn.microsoft.com/library/dn589796.aspx
https://msdn.microsoft.com/library/dn589796.aspx

253

Using load leveling to smooth the volume of activity (this approach is covered in more detail
by the Queue-based Load Leveling pattern). In a multi-tenant environment, this approach will
reduce the performance for every tenant. If the system must support a mix of tenants with
different SLAs, the work for high-value tenants might be performed immediately. Requests for
other tenants can be held back, and handled when the backlog has eased. The Priority Queue
pattern could be used to help implement this approach.

Deferring operations being performed on behalf of lower priority applications or tenants. These
operations can be suspended or limited, with an exception generated to inform the tenant that
the system is busy and that the operation should be retried later.

The figure shows an area graph for resource use (a combination of memory, CPU, bandwidth, and
other factors) against time for applications that are making use of three features. A feature is an
area of functionality, such as a component that performs a specific set of tasks, a piece of code that
performs a complex calculation, or an element that provides a service such as an in-memory cache.
These features are labeled A, B, and C.

•

•

The area immediately below the line for a feature indicates the resources that are used by
applications when they invoke this feature. For example, the area below the line for Feature A shows
the resources used by applications that are making use of Feature A, and the area between the
lines for Feature A and Feature B indicates the resources used by applications invoking Feature B.
Aggregating the areas for each feature shows the total resource use of the system.

The previous figure illustrates the effects of deferring operations. Just prior to time T1, the total
resources allocated to all applications using these features reach a threshold (the limit of resource
use). At this point, the applications are in danger of exhausting the resources available. In this system,
Feature B is less critical than Feature A or Feature C, so it’s temporarily disabled and the resources

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://docs.microsoft.com/en-us/azure/architecture/patterns/priority-queue
https://docs.microsoft.com/en-us/azure/architecture/patterns/priority-queue

254

that it was using are released. Between times T1 and T2, the applications using Feature A and Feature
C continue running as normal. Eventually, the resource use of these two features diminishes to the
point when, at time T2, there is sufficient capacity to enable Feature B again.

The autoscaling and throttling approaches can also be combined to help keep the applications
responsive and within SLAs. If the demand is expected to remain high, throttling provides a
temporary solution while the system scales out. At this point, the full functionality of the system can
be restored.

The next figure shows an area graph of the overall resource use by all applications running in a
system against time, and illustrates how throttling can be combined with autoscaling.

At time T1, the threshold specifying the soft limit of resource use is reached. At this point, the system
can start to scale out. However, if the new resources don’t become available quickly enough, then
the existing resources might be exhausted and the system could fail. To prevent this from occurring,
the system is temporarily throttled, as described earlier. When autoscaling has completed and the
additional resources are available, throttling can be relaxed.

CHAPTER 6 | Catalog of patterns

255

Issues and considerations
You should consider the following points when deciding how to implement this pattern:

Throttling an application, and the strategy to use, is an architectural decision that impacts the
entire design of a system. Throttling should be considered early in the application design process
because it isn’t easy to add once a system has been implemented.

Throttling must be performed quickly. The system must be capable of detecting an increase in
activity and react accordingly. The system must also be able to revert to its original state quickly
after the load has eased. This requires that the appropriate performance data is continually
captured and monitored.

If a service needs to temporarily deny a user request, it should return a specific error code so the
client application understands that the reason for the refusal to perform an operation is due to
throttling. The client application can wait for a period before retrying the request.

Throttling can be used as a temporary measure while a system autoscales. In some cases it’s
better to simply throttle, rather than to scale, if a burst in activity is sudden and isn’t expected to
be long lived because scaling can add considerably to running costs.

If throttling is being used as a temporary measure while a system autoscales, and if resource
demands grow very quickly, the system might not be able to continue functioning—even when
operating in a throttled mode. If this isn’t acceptable, consider maintaining larger capacity
reserves and configuring more aggressive autoscaling.

•

•

•

•

•

•
•
•

•

When to use this pattern

Example

Use this pattern:
To ensure that a system continues to meet service level agreements.

To prevent a single tenant from monopolizing the resources provided by an application.

To handle bursts in activity.

To help cost-optimize a system by limiting the maximum resource levels needed to keep it
functioning.

The final figure illustrates how throttling can be implemented in a multi-tenant system. Users from
each of the tenant organizations access a cloud-hosted application where they fill out and submit
surveys. The application contains instrumentation that monitors the rate at which these users are
submitting requests to the application.

In order to prevent the users from one tenant affecting the responsiveness and availability of the
application for all other users, a limit is applied to the number of requests per second the users from
any one tenant can submit. The application blocks requests that exceed this limit.

CHAPTER 6 | Catalog of patterns

256

Related patterns and guidance

The following patterns and guidance may also be relevant when implementing this pattern:

Instrumentation and Telemetry Guidance. Throttling depends on gathering information about
how heavily a service is being used. Describes how to generate and capture custom monitoring
information.

Service Metering Guidance. Describes how to meter the use of services in order to gain an
understanding of how they are used. This information can be useful in determining how to
throttle a service.

Autoscaling Guidance. Throttling can be used as an interim measure while a system autoscales,
or to remove the need for a system to autoscale. Contains information on autoscaling strategies.

Queue-based Load Leveling pattern. Queue-based load leveling is a commonly used mechanism
for implementing throttling. A queue can act as a buffer that helps to even out the rate at which
requests sent by an application are delivered to a service.

Priority Queue pattern. A system can use priority queuing as part of its throttling strategy to
maintain performance for critical or higher value applications, while reducing the performance of
less important applications.

•

•

•

•

•

Valet Key pattern
Use a token that provides clients with restricted direct access to a specific resource in order to offload
data transfer from the application. This is particularly useful in applications that use cloud-hosted
storage systems or queues, and can minimize cost and maximize scalability and performance.

CHAPTER 6 | Catalog of patterns

https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring
https://msdn.microsoft.com/library/dn589796.aspx
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://docs.microsoft.com/en-us/azure/architecture/patterns/priority-queue

257

Client programs and web browsers often need to read and write files or data streams to and from
an application’s storage. Typically, the application will handle the movement of the data — either by
fetching it from storage and streaming it to the client, or by reading the uploaded stream from the
client and storing it in the data store. However, this approach absorbs valuable resources such as
compute, memory, and bandwidth.
Data stores have the ability to handle the upload and download of data directly, without requiring
that the application perform any processing to move this data. But this typically requires the client
to have access to the security credentials for the store. This can be a useful technique to minimize
data transfer costs and the requirement to scale out the application, and to maximize performance.
It means, though, that the application is no longer able to manage the security of the data. After the
client has a connection to the data store for direct access, the application can’t act as the gatekeeper.
It’s no longer in control of the process and can’t prevent subsequent uploads or downloads from the
data store.

This isn’t a realistic approach in distributed systems that need to serve untrusted clients. Instead,
applications must be able to securely control access to data in a granular way, but still reduce the
load on the server by setting up this connection and then allowing the client to communicate directly
with the data store to perform the required read or write operations.

Context and problem

Solution
You need to resolve the problem of controlling access to a data store where the store can’t manage
authentication and authorization of clients. One typical solution is to restrict access to the data store’s
public connection and provide the client with a key or token that the data store can validate.

This key or token is usually referred to as a valet key. It provides time-limited access to specific
resources and allows only predefined operations such as reading and writing to storage or queues, or
uploading and downloading in a web browser. Applications can create and issue valet keys to client
devices and web browsers quickly and easily, allowing clients to perform the required operations
without requiring the application to directly handle the data transfer. This removes the processing
overhead, and the impact on performance and scalability, from the application and the server.

The client uses this token to access a specific resource in the data store for only a specific period, and
with specific restrictions on access permissions, as shown in the figure. After the specified period, the
key becomes invalid and won’t allow access to the resource.

CHAPTER 6 | Catalog of patterns

258

It’s also possible to configure a key that has other dependencies, such as the scope of the data. For
example, depending on the data store capabilities, the key can specify a complete table in a data
store, or only specific rows in a table. In cloud storage systems the key can specify a container or just
a specific item within a container.

The key can also be invalidated by the application. This is a useful approach if the client notifies the
server that the data transfer operation is complete. The server can then invalidate that key to prevent
further.

Using this pattern can simplify managing access to resources because there’s no requirement to
create and authenticate a user, grant permissions, and then remove the user again. It also makes it
easy to limit the location, the permission, and the validity period—all by simply generating a key
at runtime. The important factors are to limit the validity period, and especially the location of the
resource, as tightly as possible so that the recipient can only use it for the intended purpose.

Issues and considerations

Consider the following points when deciding how to implement this pattern:
Manage the validity status and period of the key. If leaked or compromised, the key effectively
unlocks the target item and makes it available for malicious use during the validity period. A key can
usually be revoked or disabled, depending on how it was issued. Server-side policies can be changed
or, the server key it was signed with can be invalidated. Specify a short validity period to minimize the
risk of allowing unauthorized operations to take place against the data store. However, if the validity
period is too short, the client might not be able to complete the operation before the key expires.
Allow authorized users to renew the key before the validity period expires if multiple accesses to the
protected resource are required.

Control the level of access the key will provide. Typically, the key should allow the user to only
perform the actions necessary to complete the operation, such as read-only access if the client
shouldn’t be able to upload data to the data store. For file uploads, it’s common to specify a key that
provides write-only permission, as well as the location and the validity period. It’s critical to accurately
specify the resource or the set of resources to which the key applies.

Consider how to control users’ behavior. Implementing this pattern means some loss of control
over the resources users are granted access to. The level of control that can be exerted is limited
by the capabilities of the policies and permissions available for the service or the target data store.
For example, it’s usually not possible to create a key that limits the size of the data to be written
to storage, or the number of times the key can be used to access a file. This can result in huge
unexpected costs for data transfer, even when used by the intended client, and might be caused
by an error in the code that causes repeated upload or download. To limit the number of times a
file can be uploaded, where possible, force the client to notify the application when one operation
has completed. For example, some data stores raise events the application code can use to monitor
operations and control user behavior. However, it’s hard to enforce quotas for individual users in a
multi-tenant scenario where the same key is used by all the users from one tenant.

Validate, and optionally sanitize, all uploaded data. A malicious user that gains access to the key
could upload data designed to compromise the system. Alternatively, authorized users might upload
data that’s invalid and, when processed, could result in an error or system failure. To protect against
this, ensure that all uploaded data is validated and checked for malicious content before use.

CHAPTER 6 | Catalog of patterns

259

Audit all operations. Many key-based mechanisms can log operations such as uploads, downloads,
and failures. These logs can usually be incorporated into an audit process, and also used for billing if
the user is charged based on file size or data volume. Use the logs to detect authentication failures
that might be caused by issues with the key provider, or accidental removal of a stored access policy.

Deliver the key securely. It can be embedded in a URL that the user activates in a web page, or it
can be used in a server redirection operation so that the download occurs automatically. Always use
HTTPS to deliver the key over a secure channel.
Protect sensitive data in transit. Sensitive data delivered through the application will usually take
place using SSL or TLS, and this should be enforced for clients accessing the data store directly.

Other issues to be aware of when implementing this pattern are:

If the client doesn’t, or can’t, notify the server of completion of the operation, and the only limit
is the expiration period of the key, the application won’t be able to perform auditing operations
such as counting the number of uploads or downloads, or preventing multiple uploads or
downloads.

The flexibility of key policies that can be generated might be limited. For example, some
mechanisms only allow the use of a timed expiration period. Others aren’t able to specify a
sufficient granularity of read/write permissions.

If the start time for the key or token validity period is specified, ensure that it’s a little earlier than
the current server time to allow for client clocks that might be slightly out of synchronization. The
default, if not specified, is usually the current server time.

The URL containing the key will be recorded in server log files. While the key will typically have
expired before the log files are used for analysis, ensure that you limit access to them. If log data
is transmitted to a monitoring system or stored in another location, consider implementing a
delay to prevent leakage of keys until after their validity period has expired.

If the client code runs in a web browser, the browser might need to support cross-origin resource
sharing (CORS) to enable code that executes within the web browser to access data in a different
domain from the one that served the page. Some older browsers and some data stores don’t
support CORS, and code that runs in these browsers might be able to use a valet key to provide
access to data in a different domain, such as a cloud storage account.

•

•

•

•

•

•

•

•

When to use this pattern
This pattern is useful for the following situations:

To minimize resource loading and maximize performance and scalability. Using a valet key
doesn’t require the resource to be locked, no remote server call is required, there’s no limit on
the number of valet keys that can be issued, and it avoids a single point of failure resulting from
performing the data transfer through the application code. Creating a valet key is typically a
simple cryptographic operation of signing a string with a key.

To minimize operational cost. Enabling direct access to stores and queues is resource and cost
efficient, can result in fewer network round trips, and might allow for a reduction in the number
of compute resources required.

When clients regularly upload or download data, particularly where there’s a large volume or
when each operation involves large files.

CHAPTER 6 | Catalog of patterns

260

When the application has limited compute resources available, either due to hosting limitations
or cost considerations. In this scenario, the pattern is even more helpful if there are many
concurrent data uploads or downloads because it relieves the application from handling the data
transfer.

When data is stored in a remote data store or a different datacenter. If the application was
required to act as a gatekeeper, there might be a charge for the additional bandwidth of
transferring the data between datacenters, or across public or private networks between the
client and the application, and then between the application and the data store.

This pattern might not be useful in the following situations:

If the application must perform some task on the data before it’s stored or before it’s sent to the
client. For example, if the application needs to perform validation, log access success, or execute
a transformation on the data. However, some data stores and clients are able to negotiate and
carry out simple transformations such as compression and decompression (for example, a web
browser can usually handle GZip formats).

If the design of an existing application makes it difficult to incorporate the pattern. Using this
pattern typically requires a different architectural approach for delivering and receiving data.

•

•

•

•

Azure supports shared access signatures on Azure Storage for granular access control to data in
blobs, tables, and queues, and for Service Bus queues and topics. A shared access signature token
can be configured to provide specific access rights such as read, write, update, and delete to a
specific table; a key range within a table; a queue; a blob; or a blob container. The validity can be a
specified time period or with no time limit.

Azure shared access signatures also support server-stored access policies that can be associated
with a specific resource such as a table or blob. This feature provides additional control and flexibility
compared to application-generated shared access signature tokens, and should be used whenever
possible. Settings defined in a server-stored policy can be changed and are reflected in the token
without requiring a new token to be issued, but settings defined in the token can’t be changed
without issuing a new token. This approach also makes it possible to revoke a valid shared access
signature token before it’s expired.

For more information see Introducing Table SAS (Shared Access Signature), Queue SAS and update to
Blob SAS and Using Shared Access Signatures on MSDN.

The following code shows how to create a shared access signature token that’s valid for five minutes.
The “GetSharedAccessReferenceForUpload” method returns a shared access signatures token that
can be used to upload a file to Azure Blob Storage.

Example

CHAPTER 6 | Catalog of patterns

https://blogs.msdn.microsoft.com/windowsazurestorage/2012/06/12/introducing-table-sas-shared-access-signature-queue-sas-and-update-to-blob-sas/
https://docs.microsoft.com/en-us/azure/storage/common/storage-dotnet-shared-access-signature-part-1

261

public class ValuesController : ApiController
{
 private readonly CloudStorageAccount account;
 private readonly string blobContainer;
 ...
 /// <summary>
 /// Return a limited access key that allows the caller to upload a file
 /// to this specific destination for a defined period of time.
 /// </summary>
 private StorageEntitySas GetSharedAccessReferenceForUpload(string blobName)
 {
 var blobClient = this.account.CreateCloudBlobClient();
 var container = blobClient.GetContainerReference(this.blobContainer);

 var blob = container.GetBlockBlobReference(blobName);

 var policy = new SharedAccessBlobPolicy
 {
 Permissions = SharedAccessBlobPermissions.Write,

 // Specify a start time five minutes earlier to allow for client clock skew.
 SharedAccessStartTime = DateTime.UtcNow.AddMinutes(-5),

 // Specify a validity period of five minutes starting from now.
 SharedAccessExpiryTime = DateTime.UtcNow.AddMinutes(5)
 };

 // Create the signature.
 var sas = blob.GetSharedAccessSignature(policy);

 return new StorageEntitySas
 {
 BlobUri = blob.Uri,
 Credentials = sas,
 Name = blobName
 };
 }

 public struct StorageEntitySas
 {
 public string Credentials;
 public Uri BlobUri;
 public string Name;
 }
}

The complete sample is available in the ValetKey solution available for download from GitHub. The
ValetKey.Web project in this solution contains a web application that includes the ValuesController
class shown above. A sample client application that uses this web application to retrieve a shared
access signatures key and upload a file to blob storage is available in the ValetKey.Client project.

CHAPTER 6 | Catalog of patterns

https://github.com/mspnp/cloud-design-patterns/tree/master/valet-key

262

The following patterns and guidance may also be relevant when implementing this pattern:
A sample that demonstrates this pattern is available on GitHub.

Gatekeeper Pattern. This pattern can be used in conjunction with the Valet Key pattern to protect
applications and services by using a dedicated host instance that acts as a broker between
clients and the application or service. The gatekeeper validates and sanitizes requests, and passes
requests and data between the client and the application. Can provide an additional layer of
security, and reduce the attack surface of the system.

Static Content Hosting Pattern. Describes how to deploy static resources to a cloud-based
storage service that can deliver these resources directly to the client to reduce the requirement
for expensive compute instances. Where the resources aren’t intended to be publicly available,
the Valet Key pattern can be used to secure them.

Introducing Table SAS (Shared Access Signature), Queue SAS and update to Blob SAS

Using Shared Access Signatures

Shared Access Signature Authentication with Service Bus

Next steps

•
•

•

•
•
•

CHAPTER 6 | Catalog of patternsCHAPTER 6 | Catalog of patterns

https://github.com/mspnp/cloud-design-patterns/tree/master/valet-key
https://docs.microsoft.com/en-us/azure/architecture/patterns/gatekeeper
https://docs.microsoft.com/en-us/azure/architecture/patterns/static-content-hosting
https://blogs.msdn.microsoft.com/windowsazurestorage/2012/06/12/introducing-table-sas-shared-access-signature-queue-sas-and-update-to-blob-sas/
https://docs.microsoft.com/en-us/azure/storage/common/storage-dotnet-shared-access-signature-part-1
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-sas

263

7

Design review
checklists

CHAPTER 7 | Design review checklists

264

Ensure business alignment across organizations and teams
Ensure that the business, development, and operations teams are all aligned.

Ensure the entire team understands the software lifecycle

Be sure your team understands the lifecycle of the application and which part of the
lifecycle the application is currently in.

Reduce cycle time
Minimize the time it takes to move from ideas to usable developed software.
Limit the size and scope of individual releases to keep the test burden low.
Automate the build, test, configuration, and deployment processes whenever possible.
Clear any obstacles to communication among developers and other staff.

Review and improve processes.
Set up regular reviews of current workflows, procedures, and documentation, with a goal of
continual improvement.

Do proactive planning.

Proactively plan for failure.
Have processes in place to quickly identify issues when they occur.

Escalate to the correct team members to fix and confirm resolution.

Learn from failures

If an operational failure occurs, triage the issue, document the cause and solution, and
share any lessons that were learned.

Update your build processes to automatically detect that kind of failure in the future.

Optimize for speed and collect data

Work in the smallest increments possible.
Treat new ideas as experiments.
Instrument the experiments so that you can collect production data to assess their
effectiveness.

Be prepared to fail fast if the hypothesis is wrong.

Allow time for learning

Before moving on to new projects, allow enough time to gather the important lessons and
make sure those lessons are absorbed by your team.

•

DevOps Checklist
DevOps is the integration of development, quality assurance, and IT operations into a unified culture
and set of processes for delivering software.

Use this checklist as a starting point to assess your DevOps culture and process.

•

•

•
•
•
•

•

•

•

•

•

•

•
•

•

•

Culture

CHAPTER 7 | Design review checklists

265

Give the team the time to build skills, experiment, and learn about new tools and
techniques.

Document operations

Document all tools, processes, and automated tasks with the same level of quality as your
product code.
Document the current design and architecture of any systems you support, along with
recovery processes and other maintenance procedures.
Focus on the steps you actually perform, not theoretically optimal processes.

Regularly review and update the documentation.

For code, make sure that meaningful comments are included, especially in public APIs, and
use tools to automatically generate code documentation.

Share knowledge

Ensure the documentation is organized and easily discoverable.
Use brown bags (informal presentations), videos, or newsletters to share knowledge.

Provide developers with production-like environments

Keep development and test environments as close to the production environment as
possible.
Make sure that test data is consistent with the data used in production, even if it’s sample
data and not real production data (for privacy or compliance reasons).
Plan to generate and anonymize sample test data.

Ensure that all authorized team members can provision infrastructure and deploy the
application

Anyone with the right permissions should be able to create or deploy production-like
resources without going to the operations team.

Instrument the application for insight
Always include instrumentation as a design requirement, and build the instrumentation into
the application from the start.
Instrumentation must include event logging for root cause analysis, telemetry and metrics
to monitor the overall health and usage of the application.

Track your technical debt

Document any shortcuts or other nonoptimal implementations, and schedule time in the
future to revisit these issues.

Consider pushing updates directly to production
To reduce the overall release cycle time, consider pushing properly tested code commits
directly to production.
Use feature toggles to control which features are enabled.

Development

•

•

•

•
•
•

•
•

•

•

•

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

https://www.martinfowler.com/articles/feature-toggles.html

266

Automate testing
Automate common testing tasks and integrate the tests into your build processes.
Integrated UI tests should also be performed by an automated tool.

Test for failures
Perform fault injection testing on test and staging environments.
When your test process and practices are mature, consider running these tests in
production.

Test in production

Have tests in place to ensure that deployed code works as expected.
For deployments that are infrequently updated, schedule production testing as a regular
part of maintenance.

Automate performance testing to identify performance issues early
Define acceptable performance goals for metrics like latency, load times, and resource
usage.
Include automated performance tests in your release pipeline, to make sure the application
meets those goals.

Perform capacity testing
Always define the maximum expected capacity and usage limits.
Test to make sure the application can handle those limits, but also test what happens when
those limits are exceeded.
Capacity testing should be performed at regular intervals.
After the initial release, run performance and capacity tests whenever updates are made to
production code.
Use historical data to fine tune tests and to determine what types of tests need to be
performed.

Perform automated security penetration testing
Make automated penetration testing a standard part of the build and deployment process.
Schedule regular security tests and vulnerability scanning on deployed applications,
monitoring for open ports, endpoints, and attacks.

Perform automated business continuity testing
Develop tests for large scale business continuity, including backup recovery and failover.
Set up automated processes to perform these tests regularly.

Testing

Automate deployments
Automate deploying the application to test, staging, and production environments.

Release

•
•

•
•

•
•

•

•

•
•

•
•

•

•
•

•
•

•

CHAPTER 7 | Design review checklists

267

Use continuous integration
Merge all developer code into a central codebase on a regular schedule and then
automatically perform standard build and test processes.
Run the CI process every time code is committed or checked in. At least once per day.

Consider adopting a trunk based development model.

Consider using continuous delivery
Ensure that code is always ready to deploy by automatically building, testing, and
deploying code to production-like environments.
Continuous deployment is an additional process that automatically takes any updates that
have passed through the CI/CD pipeline and deploys them into production.
Requires robust automatic testing and advanced process planning.

Make small incremental changes
Avoid large changes to the code base, to limit the potential effects of each change

Control exposure to changes
Use feature toggles to control when features are enabled for end users.

Implement release management strategies to reduce deployment risk
Use strategies such as canary releases or blue-green deployments to deploy updates to a
subset of users.
Confirm the update works as expected and then roll the update out to the rest of the
system.

Document all changes
Always keep a clear record of any changes, no matter how small.
Log everything that changes, including patches applied, policy changes, and configuration
changes.
Don’t include sensitive data in these logs. For example, log that a credential was updated
and who made the change, but don’t record the updated credentials.

Automate Deployments
Automate all deployments and have systems in place to detect any problems during
rollout.
Have a mitigation process for preserving the existing code and data in production before
the update replaces them in all production instances.
Have an automated way to roll forward fixes or roll back changes.

Consider making infrastructure immutable
You shouldn’t modify infrastructure after it’s deployed to production.

Make systems observable
Set up external health endpoints to monitor status and ensure that applications are coded
to instrument the operations metrics.
Use a common and consistent schema that lets you correlate events across systems.

Monitoring

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

https://trunkbaseddevelopment.com/
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/BlueGreenDeployment.html

268

Aggregate and correlate logs and metrics
Make sure that telemetry and log data is processed and correlated in a short period of
time, so that operations staff always have an up-to-date picture of system health.
Organize and display data in ways that give a cohesive view of any issues so that whenever
possible it’s clear when events are related to one another.
Consult your corporate retention policy for requirements on how data is processed and
how long it should be stored.

Implement automated alerts and notifications
Set up monitoring tools like Azure Monitor to detect patterns or conditions that indicate
potential or current issues, and send alerts to the team members who can address the
issues.
Tune the alerts to avoid false positives.

Monitor assets and resources for expirations
Make sure to track assets that expire, such as certificates, when they expire, and what
services or features depend on them.
Use automated processes to monitor these assets.
Notify the operations team before an asset expires and escalate if expiration threatens to
disrupt the application.

Automate operations tasks
Automate repetitive operations processes whenever possible to ensure consistent execution
and quality.
Code that implements the automation should be versioned in source control.

As with any other code, automation tools must be tested.

Take an infrastructure-as-code approach to provisioning
Use scripts and Azure Resource Manager templates.
Keep the scripts and templates in source control, like any other code you maintain.

Consider using containers

Use containers to deploy applications as self-contained packages, to provide consistency
across environments.

Implement resiliency and self-healing

Instrument your applications so that issues are reported immediately and you can manage
outages or other system failures.

Have an operations manual
Keep an operations manual or runbook to document the procedures and management
information needed for operations staff to maintain a system.
Document any operations scenarios and mitigation plans that might come into play during
a failure or other disruption to your service.

Management

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•

CHAPTER 7 | Design review checklists

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/

269

Create this documentation during the development process and keep it up to date
afterwards.
Review, test, and improve regularly.

Encourage team members to contribute and share knowledge.
Make it easy for anyone on the team to help keep documents updated.

Document on-call procedures
Make sure on-call duties, schedules, and procedures are documented and shared to all
team members.
Keep this information up-to-date at all times.

Document escalation procedures for third-party dependencies
Have a plan to deal with outages if you rely on third-party services.
Create documentation for your planned mitigation processes.
Include support contacts and escalation paths.

Use configuration management
Plan for and record your configuration changes.
Audit regularly to ensure that what’s expected is actually in place.

Get an Azure support plan and understand the process
Determine the right plan for your needs and make sure the entire team knows how to use
it.
Team members should understand the details of the plan, how the support process works,
and how to open a support ticket with Azure.
If you are anticipating a high-scale event, Azure support can assist you with increasing your
service limits.

Follow least-privilege principles when granting access to resources
Carefully manage access to resources.
Only grant a user access to what they need to complete their tasks.

Use role-based access control
Use Role-Based Access Control (RBAC) grant access based on Azure Active Directory
identities and groups.

Use a bug tracking system to track issues
Use a bug tracking tool to record details about problems, assign resources to address them,
and provide an audit trail of progress and status.

Manage all resources in a change management system
Treat all these types of resources as code throughout the test/build/review process.

Use checklists.
Maintain the checklists, and continually look for ways to automate tasks and streamline
processes.

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

CHAPTER 7 | Design review checklists

https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-control-what-is
https://azure.microsoft.com/services/active-directory/

270

Deploy all components, services, resources, and compute instances as multiple
instances.
Design the application to be configurable to use multiple instances.
Design the application to automatically detect failures and redirect requests to
non-failed instances.

Manage critical and less-critical workloads differently.
Specify the service features and number of instances to meet their availability
requirements.

Minimize the number of different services used where possible.
Understand dependencies and the impact of failure or reduced performance in each one on
the application.

Make message consumers and the operations they carry out idempotent.
Detect duplicated messages or use an optimistic approach to handling conflicts.

Ensure consistency by using an optimistic approach to handling conflicts.

Use asynchronous messaging where the sender does not block waiting for a reply.
Use a messaging system that provides high availability and guarantees at-least-once
semantics.
Make message processing important (see the previous item).

Avoid any single point of failure

Decompose workload per different service-level agreement

Minimize and understand service dependencies

Design tasks and messages to be idempotent (safely repeatable)

Use a highly availably message broker for critical transactions

•

•
•

•
•

•
•

•
•
•

•
•

•

•
•

•

Design the application so that it can automatically degrade gracefully.
When resource limits are reached, take appropriate action to minimize the impact for the
user from reduced availability and failed connections.
Postpone requests to a failing subsystem where possible.

Design applications to gracefully degrade

CHAPTER 7 | Design review checklists

Availability Checklist
Availability defines the proportion of time that the system is functional and working. Review the items
in this checklist to improve your application’s availability.

271

Design applications to handle varying workloads, such as peaks first thing in the morning
or when a new product is released on an ecommerce site.
Use auto-scaling where possible.
Queue requests to services and degrade gracefully when queues are near to full
capacity.
Ensure that there is sufficient performance and capacity available under non-burst
conditions to drain the queues and handle outstanding requests. For more
information, see the Queue-Based Load Leveling Pattern.

Gracefully handle rapid burst events

Deploy at least two instances of each role in the service. This enables one role to be
unavailable while the other remains active.

Host vital business applications in more than one region to provide maximum
availability.

Automate deployment using tested and proven mechanisms such as scripts and
deployment applications.
Resource Manager templates.

Use automated techniques to perform all application updates.

Fully test your automated processes to ensure there are no errors.

Use security restrictions on automation tools.

Carefully define and enforce deployment policies.

Deploy multiple instances of roles for each service

Host applications in multiple regions

Automate and test deployment and maintenance tasks

Deployment and maintenance

•

•
•

•

•

•

•

•
•
•
•
•

•

•

Azure App Service supports swapping between staging and production
environments without application downtime.
If you prefer to stage on-premises, or deploy different versions of the application
concurrently and gradually migrate users, you may not be able to use a VIP Swap operation.

Consider using staging and production features of the platform

CHAPTER 7 | Design review checklists

https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling

272

The configuration settings for an Azure application or service can be changed without
requiring the role to be restarted.
Design an application to accept changes to configuration settings without
requiring a restart of the whole application.

Apply configuration changes without recycling

•

•

•

•

•

•

•

•

•
•
•

Place two or more virtual machines in the same availability set to guarantee that they will
not be deployed to the same fault domain.
To maximize availability, create multiple instances of each critical virtual machine used by
your system and place these instances in the same availability set.
If you are running multiple virtual machines that serve different purposes, create an
availability set for each virtual machine.
Add instances of each virtual machine to each availability set.

Specify how many upgrade domains should be created for a service when the service is
deployed.

Roles are also distributed across fault domains, each of which is reasonably
independent from other fault domains in terms of server rack, power, and cooling provision,
in order to minimize the chance of a failure affecting all role instances. This distribution occurs
automatically and you cannot control it.

Configure availability sets for Azure virtual machines

Use upgrade domains for zero downtime during updates

Note

Use Read-access geo-redundant storage (RA-GRS) for greater availability.

Use Azure SQL Database and Cosmos DB for geo-replication support.
Configure secondary database replicas in other regions.
If there is a regional outage or you can’t connect to the primary database, fail over
to the secondary replica.

For more information, see How to distribute data globally with Azure Cosmos DB.

Geo-replicate data in Azure Storage

Geo-replicate databases

Data management

CHAPTER 7 | Design review checklists

273

Ensure backup and restore meets the Recovery Point Objective (RPO).
Regularly and automatically back up data that is not preserved elsewhere.
Verify you can reliably restore both the data and the application itself should a failure occur.
Secure the backup process to protect the data in transit and in storage.

When using Azure Redis Cache, choose the standard or premium tier to maintain a
secondary copy of the contents. For more information, see Create a cache in Azure Redis
Cache.

Use partitioning to minimize the chances of conflicting updates occurring.

Use periodic backup and point-in-time restore

Enable the high availability option to maintain a secondary copy of an Azure Redis cache

Use optimistic concurrency and eventual consistency

•

•
•
•
•

•

Ensure that the timeouts you apply are appropriate for each service or resource as well as
the client that is accessing them.
It may be appropriate to allow a longer timeout for a particular instance of a client,
depending on the context and other actions that the client is performing.

Design a retry strategy for access to all services and resources that do not
inherently support automatic connection retry.
Use a strategy that includes an increasing delay between retries as the number of failures
increases.

Instead of continually retrying an operation that is unlikely to succeed, the
application should quickly accept that the operation has failed and gracefully handle this
failure.
You can use the circuit breaker pattern to reject requests for specific operations for defined
periods. For more information, see Circuit Breaker Pattern.

Introduce the concept of a timeout

Retry failed operations caused by transient faults

Stop sending requests to avoid cascading failures

Errors and failures

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

274

Design applications to take advantage of multiple instances without affecting
operation and existing connections where possible.
Use multiple instances and distribute requests between them and detect and avoid sending
requests to failed instances, in order to maximize availability.

Provide a facility to replay the writes in blob storage to SQL Database when the
service becomes available.
Detect failures and redirect requests to other services that can offer alternative
functionality, or to backup instances that can maintain core operations while the
primary service is offline.

Compose or fall back to multiple components

Fall back to a different service or workflow where possible

For failures that are likely but have not yet occurred, provide sufficient data to enable
operations staff to determine the cause, mitigate the situation, and ensure that the system
remains available.
For failures that have already occurred, the application should return an error
message to the user but attempt to continue running with reduced functionality.
In all cases, the monitoring system should capture comprehensive details to
enable quick recovery, and to modify the system to prevent the situation from arising again.

Implement probes or check functions that are executed regularly from outside the
application.

Test failover and fallback systems before they are required to compensate for a live problem
at runtime.

Provide rich instrumentation for likely failures and failure events

Monitor system health by implementing checking functions

Regularly test all failover and fallback systems

Monitoring and disaster recovery

•

•

•

•

•

•

•

•

•

• Ensure monitoring and instrumentation function correctly.

Test the monitoring systems

CHAPTER 7 | Design review checklists

275

Ensure that each step is independent and can be retried.
Monitor and manage the progress of long-running workflows by implementing a
pattern such as Scheduler Agent Supervisor Pattern.

Create an accepted, fully-tested plan for recovery from any type of failure that may affect
system availability.
Choose a multi-site disaster recovery architecture for any mission-critical
applications.
Identify a specific owner of the disaster recovery plan, including automation and
testing.
Ensure the plan is well-documented, and automate the process as much as
possible.
Establish a backup strategy for all reference and transactional data, and test the
restoration of these backups regularly.
Train operations staff to execute the plan and perform regular disaster simulations to
validate and improve the plan.

Track the progress of long-running workflows and retry on failure

Plan for disaster recovery

•
•

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

276

Scalability checklist

Design parts of the process to be discrete and decomposable.

Minimize the size of each part, while following the usual rules for separation of
concerns and the single responsibility principle.

Design your applications to react to variable load by increasing and decreasing the number
of instances of roles, queues, and other services they use.

Implement configuration or auto-detection of instances as they are added and
removed, so that code in the application can perform the necessary routing.

Plan for additional resources to accommodate growth.

For each resource, know the upper scaling limits, and use sharding or decomposition to go
beyond these limits.

Determine the scale units for the system in terms of well-defined sets of resources.

Design the application so that it’s easily scaled by adding one or more scale units.

Where possible, ensure that the application does not require affinity.

Route requests to any instance, so that you can scale in or out as needed.

Prefer an autoscaling capability, such as Azure Autoscale, to custom or third-party
mechanisms unless the built-in mechanism can’t fulfill your requirements.

Use scheduled scaling rules where possible to ensure resources are available without
a start-up delay, but use reactive autoscaling rules where appropriate to cope with
unexpected changes in demand.

You can use the autoscaling operations in the Service Management API to adjust
autoscaling, and to add custom counters to rules.

Partition the workload

Design for scaling

Scale as a unit

Avoid client affinity

Take advantage of platform autoscaling features

Service design

CHAPTER 7 | Design review checklists

•
•

•

•

•
•

•
•

•
•

•

•

•

277

If a request to a service is expected to take a long time to run or absorb considerable
resources, offload the processing for this request to a separate task.

For more information, go to https://docs.microsoft.com/en-us/azure/architecture/best-
practices/background-jobs

Where there are many background tasks, or the tasks require considerable time or
resources, spread the work across multiple compute units (such as worker roles or
background jobs).

A shared-nothing architecture uses independent, self-sufficient nodes with no single point
of contention (such as shared services or storage).

Offload intensive CPU/IO tasks as background tasks

Distribute the workload for background tasks

Consider moving towards a shared-nothing architecture

CHAPTER 7 | Design review checklists

•

•

•

•

Divide the data across multiple databases and database servers, or design the application
to use data storage services that can provide this partitioning transparently (examples
include Azure SQL Database Elastic Database, and Cosmos DB).

You can use a combination of horizontal, vertical, and functional techniques to achieve
maximum benefit from increased query performance, simpler scalability, more flexible
management, better availability, and to match the type of store to the data it will hold.

Consider using different types of data store for different types of data, choosing the types
based on how well they are optimized for the specific type of data.

Avoid designing interactions in which an application is required to make multiple calls to a
service, rather than a single call that can return all of the data. For more info, go to https://
docs.microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/

Combine several related operations into a single request when the call is to a service or
component that has noticeable latency.

Use data partitioning

Reduce chatty interactions between components and services

Design for eventual consistency

Data management

•

•

•

•

•

https://docs.microsoft.com/en-us/azure/architecture/best-practices/background-jobs
https://docs.microsoft.com/en-us/azure/architecture/best-practices/background-jobs
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/

278 CHAPTER 7 | Design review checklists

Consider implementing the Queue-Based Load Leveling Pattern. Use a queue that acts as a
buffer between a task and a service that it invokes.

Remove logic (such as processing XML documents or JSON objects) from the data store,
and perform processing within the application.

Do as much of the compute-intensive processing as possible within the application.

Retrieve only the data you require by specifying columns and using criteria to select rows.
For more info, go to https://docs.microsoft.com/en-us/azure/architecture/antipatterns/
extraneous-fetching/

Make use of table value parameters and the appropriate isolation level. Use mechanisms
like entity tags to avoid retrieving data unnecessarily.

Use caching wherever possible to reduce the load on resources and services that generate
or deliver data.

Caching should occur at all levels where appropriate in each layer of the application,
including data access and user interface generation.

Periodically archive old data that is no longer accessed, or move data that is rarely accessed
into long-term storage.

Minimize the size DTOs to reduce the load on resources and the network.

Adopt a format that has the maximum interoperability to enable easy reuse of a
component.

Design and configure the application to use output caching or fragment caching where
possible, to minimize processing load.

Configure the server to deliver the appropriate cache control headers to enable caching of
content on proxy servers and clients.

Use queues to level the load for high velocity data writes

Minimize the load on the data store

Minimize the volume of data retrieved

Aggressively use caching

Handle data growth and retention

Optimize Data Transfer Objects (DTOs) using an efficient binary format

Set cache control

Enable client side caching.

•

•

•

•

•

•

•

•

•

•

•

•

https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/extraneous-fetching/
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/extraneous-fetching/

279 CHAPTER 7 | Design review checklists

Consider storing static or relatively static public content, such as images, resources, scripts,
and style sheets, in blob storage.

Consider using the Content Delivery Network to cache this content and deliver it to clients.

Use Azure blob storage and the Azure Content Delivery Network to reduce the load on
the application

•

•

Reduce impact on performance by optimizing the code in a stored procedure.

If you use an object/relational mapping framework, understand how it works and how it
may affect performance of the data access layer.

Consider if some additional storage volume and duplication is acceptable in order to
reduce the load on the data store.

Consider if the application itself (which is typically easier to scale) can be relied upon to
take over tasks such as managing referential integrity in order to reduce the load on the
data store.

Optimize and tune SQL queries and indexes

Consider de-normalizing data

•

•

•

•

Use asynchronous code wherever possible when accessing resources or services that may
be limited by I/O or network bandwidth, or that have a noticeable latency, in order to avoid
locking the calling thread.

To implement asynchronous operations, use the Task-based Asynchronous Pattern (TAP).

Never lock access to resources such as storage or other services that have noticeable
latency.

Always use optimistic approaches to managing concurrent operations, such as writing to
storage.

Use features of the storage layer to manage conflicts. In distributed applications, data may
be only eventually consistent.

Use asynchronous calls

Avoid locking resources, and use an optimistic approach instead

Service implementation

•

•

•

•

•

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

280 CHAPTER 7 | Design review checklists

Use HTTP compression to reduce latency, especially for static content.

Only use compression when there is a demonstrable gain in performance.

If you require better performance, consider binary serialization formats instead of JSON or
XML.

Maintain connections and resources only for as long as you need to use them.

Acquire resources as late as possible, and dispose of them as soon as possible.

Design clients to be stateless with respect to the servers that they use.

If the application must maintain session state, store sensitive data or large volumes of per-
client data in a distributed server-side cache that all instances of the application can access.

When using table stores that require the table and column names to be passed and
processed with every query, such as Azure table storage, consider using shorter names to
reduce overhead.

Do not sacrifice readability or manageability by using overly compact names.

Limit the number that are required and ensure that existing connections are reused
whenever possible.

APIs for some services automatically reuse connections, provided service-specific guidelines are
followed. It’s important that you understand the conditions that enable connection reuse for
each service that your application uses.

Compress highly compressible data over high latency, low bandwidth networks

Minimize the time that connections and resources are in use

Avoid storing server-side session state

Optimize table storage schemas

Minimize the number of connections required

Note

Send requests in batches to optimize network use

•

•

•

•

•

•

•

•

•

•

281

Avoid repeated calls to methods that test the existence of a resource and then create the
resource if it does not exist.

Instead:

Create the required resources when the application is deployed, or when it first starts
(a single call to CreateIfNotExists for each resource in the startup code is acceptable).
However, be sure to handle exceptions that may arise if your code attempts to access
a resource that doesn’t exist. In these situations, you should log the exception, and
possibly alert an operator that a resource is missing.

Under some circumstances, it may be appropriate to create the missing resource as part
of the exception handling code. But you should adopt this approach with caution as the
non-existence of the resource might be indicative of a programming error (a misspelled
resource name for example), or some other infrastructure-level issue.

Carefully choose the APIs and frameworks you use to minimize resource usage,
execution time, and overall load on the application.

Use a specific account to access resources or services that impose a limit on
connections, or perform better where fewer connections are maintained.

Conduct testing on the same type of hardware as the production platform, and with the
same types and quantities of data and user load as it will encounter in production.

Create resource dependencies during deployment or at application startup

Use lightweight frameworks

Consider minimizing the number of service accounts

Carry out performance profiling and load testing

•

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

282

Resiliency checklist

Get agreement from your customer for the availability targets of each piece of your
applications. For more information, see Defining your resiliency requirements.

Identify what types of failures an application might experience.
Capture the potential effects and impact of each type of failure on the application.
Identify recovery strategies.

Provision multiple instances to improve resiliency and scalability.
For Azure App Service, select an App Service Plan that offers multiple instances.
For Azure Cloud Services, configure each of your roles to use multiple instances.
For Azure Virtual Machines (VMs), ensure that your VM architecture includes more than one
VM and that each VM is included in an availability set.

Configure your application to scale out automatically as load increases.

If your application uses Azure VMs, provision a load balancer.

Designing your application for resiliency requires planning for and mitigating a variety of failure
modes that could occur. Review the items in this checklist against your application design to improve
its resiliency.

Define your customer’s availability requirements

Perform a failure mode analysis (FMA) for your application

Deploy multiple instances of services

Use autoscaling to respond to increases in load

Use load balancing to distribute requests

Requirements

Application Design

•

•
•
•

•
•
•
•

•

•

CHAPTER 7 | Design review checklists

283

Provision more than one medium or larger Application Gateway instance to guarantee
availability of the service under the terms of the SLA.

Use an active-active pattern (distributing requests across multiple active instances) or an
active-passive pattern (keeping an instance in reserve, in case the primary instance fails).
Deploy multiple instances of your application’s services across regional pairs.

Specify a traffic routing method for your application.

Ensure that your health logic checks the critical parts of the system and responds
appropriately to health probes.
For a Traffic Manager probe, your health endpoint should check critical dependencies that
are deployed within the same region, and whose failure should trigger a failover to another
region.
For a load balancer, the health endpoint should report the health of the VM.
Don’t include other tiers or external services.

For guidance on implementing health monitoring in your application, see Health Endpoint
Monitoring Pattern.

If your application has dependencies on third-party services, identify where and how they
can fail and the effect failures have on your application.
Log your invocations of monitoring and diagnostics, and correlate them with your
application’s health and diagnostic logging using a unique identifier.

Configure Azure Application Gateways to use multiple instances

Consider deploying your application across multiple regions

Use Azure Traffic Manager to route your application’s traffic to different
regions

Configure and test health probes for your load balancers and traffic managers

Monitor third-party services

Use Availability Sets for each application tier

•

•

•

•

•

•

•
•
•

•

•

CHAPTER 7 | Design review checklists

284

Ensure that any third-party service you consume provides an SLA

Implement resiliency patterns for remote operations where appropriate

Implement asynchronous operations whenever possible

If your application depends on communication between remote services, follow design
patterns for dealing with transient failures, such as Retry Pattern, and Circuit Breaker
Pattern.

Design each part of your application to allow for asynchronous operations
whenever possible.

Evaluate the replication methods for each type of data storage in Azure, including Azure
Storage Replication and SQL Database Active Geo-Replication to ensure that your
application’s data requirements are satisfied. For more information, go to https://docs.
microsoft.com/en-us/azure/cosmos-db/distribute-data-globally.

Limit write permissions. Only grant write access to users who need it, and do not give an
account write access to both production and backup data.

Regularly test the documented steps to verify that an operator following them can
successfully fail over and fail back the data source.

Regularly verify that your backup data is what you expect by running a script to validate
data integrity, schema, and queries.
Log and report any inconsistencies so the backup service can be repaired.

Understand the replication methods for your application’s data sources

Ensure that no single user account has access to both production and backup data

Document and test your fail over and fail back process

Validate your data backups

Data management

•

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

285

Choose a replication strategy when a Storage Account is provisioned.
Select Azure Read-Access Geo Redundant Storage (RA-GRS) to protect your
application data against the rare case when an entire region becomes unavailable.
For VMs, do not rely on RA-GRS replication to restore the VM disks (VHD files). Instead, use
Azure Backup.

Consider using a storage account type that is geo-redundant

The default for access to the application’s resources should be as restrictive as possible.
Grant higher level permissions on an approval basis.
Verify least privilege permissions for other resources that have their own permissions
systems such as SQL Server.

Ensure that your application’s dependent services fail over and fail back in the correct order.

Use blue/green or a canary deployment and test your application in production.

Test your application in an environment as close as possible to production, by
simulating or triggering real failures.
Verify your application’s ability to recover from all types of faults, alone and in combination.
Check that failures are not propagating or cascading through your system.

Implement application-level protection against distributed denial of service (DDoS)
attacks

Implement the principle of least privilege for access to the application’s resources

Perform failover and failback testing

Perform fault-injection testing

Run tests in production using both synthetic and real user data

Security

Testing

•
•

•

•
•
•

•

•

•
•

•

CHAPTER 7 | Design review checklists

https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy
https://docs.microsoft.com/en-us/azure/backup/

286

Clearly define and document your release process, and ensure it’s available to the entire
operations team.

Use the blue/green or canary release deployment technique to deploy your
application to production.

Implement a robust logging strategy to capture as much version-specific
information as possible.

Design a rollback process to go back to a last known good version and minimize downtime.

Summarize remote call metrics such as latency, throughput, and errors in the 99 and 95
percentiles.
Perform statistical analysis on the metrics to uncover errors that occur within each
percentile.

Document the release process for your application

Design your release process to maximize application availability

Log and audit your application’s deployments

Have a rollback plan for deployment

Automate your application’s deployment process

Deployment

Implement best practices for monitoring and alerting in your application

Measure remote call statistics and make the information available to the
application team

Operations

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

287

Identify the key performance indicators of your application’s health, such as transient
exceptions and remote call latency, and set appropriate threshold values for each of them.
Send an alert to operations when the threshold value is reached.
Set these thresholds at levels that identify issues before they become critical and require a
recovery response.

Train multiple individuals on detection and recovery and make sure there is always at least
one active at any time.

If your application requirements exceed Azure subscription limits, create another Azure
subscription and provision sufficient resources there.

Scale up (for example, choosing another pricing tier) or scale out (adding new instances) to
avoid per-service limits.

Design your application to utilize storage within those targets.
Provision additional Storage Accounts if you exceed storage targets.
Provision additional Azure Subscriptions and then provision additional Storage Accounts if
you run up against the Storage Account limit.

Implement an early warning system that alerts an operator

Ensure that more than one person on the team is trained to monitor the
application and perform any manual recovery steps

Ensure that your application does not run up against Azure subscription limits

Ensure that your application does not run up against per-service limits

Design your application’s storage requirements to fall within Azure storage scalability and
performance targets

Track the number of transient exceptions and retries over an appropriate timeframe

If your workload fluctuates over time, use Azure VM scale sets to automatically scale the
number of VM instances.

Measure the actual CPU, memory, disk, and I/O of your VMs in production and verify that
the VM size you’ve selected is sufficient.

Determine if your application’s workload is stable or fluctuating over time

Select the right VM size for your application

•

•
•

•

•

•

•
•
•

•

•

CHAPTER 7 | Design review checklists

288

Include a process for contacting support and escalating issues as part of your
application’s resiliency from the outset.

If your application requires more than 200 storage accounts, you will have to
create a new subscription and create additional storage accounts there.

If your application exceeds the scalability targets for virtual machine disks,
provision additional storage accounts and create the virtual machine disks there.

Capture robust telemetry information while the application is running in the production
environment.

Ensure that your logging operations are implemented as asynchronous operations to avoid
blocking application code.

Ensure that your logging system correlates calls across service boundaries so you can track
the request throughout your application.

Create a process for interacting with Azure support

Ensure that your application doesn’t use more than the maximum number of storage
accounts per subscription

Ensure that your application doesn’t exceed the scalability targets for virtual machine
disks

Log telemetry data in the production environment

Implement logging using an asynchronous pattern

Correlate log data across service boundaries

Telemetry

Use Azure Resource Manager templates to provision resources

Azure Resources

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

If your application uses Azure SQL Database, ensure that you have selected the appropriate
service tier.

Select the right service tier for Azure SQL Database

•

289

Use role-based access control (RBAC)

Use resource locks for critical resources, such as VMs

Choose regional pairs

Organize resource groups by function and lifecycle

When deploying to two regions, choose regions from the same regional pair.

Use RBAC to assign authorization roles to members of your DevOps team, to prevent
accidental deletion or changes to deployed resources.

Create separate resource groups for production, development, and test environments.
In a multi-region deployment, put resources for each region into separate resource
groups. This makes it easier to redeploy one region without affecting the other region(s).

•

•

•
•

CHAPTER 7 | Design review checklists

Give resources meaningful names

290

Azure Services

Select a tier and instance size that meet your performance requirements under typical load,
and then scale out the instances to handle changes in traffic volume.

Use app settings to store application configuration settings.
Define the settings in your Resource Manager templates, or using PowerShell, so you can
apply them as part of an automated deployment/update process.

Don’t use slots on your production deployment for testing.

If your solution has both a web front-end and a web API, consider decomposing them into
separate App Service apps.
If you don’t need that level of scalability at first, you can deploy the apps into the same
plan, and move them into separate plans later.

Use SQL Database automated backups.

Create a deployment slot for staging. Deploy application updates to the staging slot, and
verify the deployment before swapping it into production.

The following checklist items apply to specific services in Azure.

Use Standard or Premium tier

Avoid scaling up or down

Store configuration as app settings

Create separate App Service plans for production and test

Separate web apps from web APIs.

Avoid using the App Service backup feature to back up Azure SQL databases

Deploy to a staging slot

App Service

When you deploy an update to production, move the previous production deployment into
the LKG slot.

Create a deployment slot to hold the last-known-good (LKG) deployment

•

•

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-automated-backups

291

Including application logging and web server logging.

Don’t use the same storage account for logs and application data.

Use a performance monitoring service such as New Relic or Application Insights to monitor
application performance and behavior under load.

Deploy Application Gateway with at least two instances. In order to qualify for the SLA, you
must provision two or more medium or larger instances.

Use at least two replicas for read high-availability, or three for read-write high-availability.

Enable diagnostics logging

Create a separate storage account for logs

Monitor performance

Log to blob storage

Provision at least two instances

Provision more than one replica

Application Gateway

Azure Search

If the data source is geo-replicated, point each indexer of each regional Azure Search service to
its local data source replica.
For large datasets stored in Azure SQL Database, instead, point all indexers to the primary
replica. After a failover, point the Azure Search indexers at the new
primary replica.
If the data source is not geo-replicated, point multiple indexers at the same data source, so that
Azure Search services in multiple regions continuously and
independently index from the data source.

Configure indexers for multi-region deployments

•

•

•

•

•

•

•

•

CHAPTER 7 | Design review checklists

https://newrelic.com/
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://azure.microsoft.com/en-us/support/legal/sla/application-gateway/v1_0/

292

Create a backup queue in a storage account in another region.

If your primary database fails, or simply needs to be taken offline, perform a manual
failover to the secondary database.

For application data, use read-access geo-redundant storage (RA-GRS)

Replicate the database across regions.

Use Standard or Premium tier

Enable SQL Database auditing

Use Active Geo-Replication

Use sharding

For VM disks, use Managed Disks

For Queue storage, create a backup queue in another region

Azure Storage

Cosmos DB

SQL Database

•

•

Use point-in-time restore to recover from human error

Use geo-restore to recover from a service outage

SQL Server (running in a VM)

Use SQL Server Always On Availability Groups to replicate the database.

Consider using sharding to partition the database horizontally. Sharding can provide fault
isolation. (There is some nuance to this, it’s not an always-do-this recommendation)

Replicate the database

•

•

CHAPTER 7 | Design review checklists

293

Traffic Manager

Virtual Machines

After a Traffic Manager failover, perform manual failback, rather than automatically failing
back.

Before failing back, verify that all application subsystems are healthy.

Create a custom endpoint that reports on the overall health of the application.

Don’t report errors for non-critical services, however.

Put multiple VMs in an availability set or VM scale set, with a load balancer in front.

When you add a new VM to an existing availability set, make sure to create a NIC for the
VM, and add the NIC to the back-end address pool on the load balancer.

Perform manual failback

Create a health probe endpoint

Avoid running a production workload on a single VM

Specify an availability set when you provision the VM

•

•

•
•

•

•

•

•

•

•

•

In an N-tier application, don’t put VMs from different tiers into the same
availability set.

To get the redundancy benefit of Failure Domains and Update Domains, every VM in the
availability set must be able to handle the same client requests.

When moving an existing workload to Azure, start with the VM size that’s the closest match
to your on-premises servers.
Then measure the performance of your actual workload with respect to CPU, memory, and
disk IOPS, and adjust the size if needed.

If you need multiple NICs, be aware of the NIC limit for each size.

Put each application tier into a separate Availability Set

Choose the right VM size based on performance requirements

CHAPTER 7 | Design review checklists

If you are already using Azure Backup to back up your VMs, consider using Azure Backup
for SQL Server workloads using DPM.

Otherwise, use SQL Server Managed Backup to Microsoft Azure.

Back up the database

•

•

https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-overview
https://docs.microsoft.com/en-us/azure/backup/
https://docs.microsoft.com/en-us/azure/backup/backup-azure-backup-sql
https://docs.microsoft.com/en-us/azure/backup/backup-azure-backup-sql

294

Include basic health metrics, infrastructure logs, and boot diagnostics.

Enable diagnostic logs

•

•

•

•

Block access from malicious users, or allow access only from users who have
privilege to access the application.

For an HTTP probe, use a custom endpoint that reports the overall health of the application,
including all critical dependencies.

Don’t block traffic to or from this IP in any firewall policies or network security group (NSG)
rules.

To whitelist or block public IP addresses, add an NSG to the subnet

Create a custom health probe

Don’t block the health probe

Use the AzureLogCollector extension for Windows VMs

Enable Load Balancer logging

CHAPTER 7 | Design review checklists

Install applications on a data disk, not the OS disk

Use Azure Backup to back up VMs

Use Managed Disks for VHDs

295

•
•
•

In the future, new trends, user demands, and capabilities will continue to create even more
opportunities to enhance your architectures. To stay ahead of the game, we encourage you to keep
up-to-date with the resources and guidance below:

Bookmark the Architecture Center at aka.ms/architecturecenter.
Visit the Azure Documentation Center for step-by-step guidance, quickstarts and downloads.
Get free online Azure training including Pluralsight and guided learning paths.

8

Summary
In this guide you have learned how to choose the right architecture style
for your application, choose the most appropriate compute and data
store technologies, and apply design principles and pillars when building
your applications.

Start building with an Azure free account
If you haven’t already, start an Azure free account to take advantage of a
number of benefits, including:

A $200 credit to use on any Azure product for 30 days.
Free access to our most popular products for 12 months, including
compute, storage networking, and database.

25+ products that are always-free.

•
•
•

Get help
from the
experts
Contact us at
aka.ms/azurespecialist

https://docs.microsoft.com/en-us/Azure/architecture/
https://docs.microsoft.com/en-us/azure/
https://azure.microsoft.com/en-us/training/
http://azure.com/free
https://azure.microsoft.com/en-us/overview/sales-number/
https://azure.microsoft.com/en-us/overview/sales-number/

296

9

Azure reference
architectures
Our reference architectures are arranged by scenario, with related
architectures grouped together. Each architecture includes recommended
practices, along with considerations for scalability, availability,
manageability, and security. Most also include a deployable solution.

CHAPTER 8 | Azure reference architectures

Identity management …..…..… 293

Hybrid network …..…..… 298

Network DMZ …...… 303

Managed web application …..…...… 306

Running Linux VM workloads …...….....................................… 310

Running Windows VM workloads …..…................................… 315

297

Identity
management
These reference architectures show options for integrating your on-
premises Active Directory (AD) environment with an Azure network.

Your application is hosted partly on-
premises and partly in Azure.

Integrate on-premises AD with Azure AD

Extend AD DS to Azure

Create an AD DS forest in Azure

Extend AD FS to Azure

You need to use AD DS features that are
not currently implemented by Azure AD.

You need to maintain security separation
for objects and identities held in the
cloud, or to migrate individual domains
from on-premises to the cloud.

You need to:

Authenticate and authorize users
from partner organizations.
Allow users to authenticate from web
browsers running outside of the
organizational firewall.
Allow users to connect from
authorized external devices such as
mobile devices.

•

•

•

Consider this architectureFor this scenario

CHAPTER 8 | Azure reference architectures

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/identity/azure-ad
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/identity/adds-extend-domain
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/identity/adds-forest

298

A
rchitecture Com

ponents
A

zure A
D

 tenant
An instance of Azure AD

 created by your organization. It acts
as a directory service for cloud applications by storing
objects copied from

 the on-prem
ises Active D

irectory and
provides identity services.

W
eb tier subnet

This subnet holds VM
s that run a w

eb application. Azure AD

can act as an identity broker for this application.

O
n-prem

ise A
D

 D
S server

An on-prem
ise directory and identity service. The AD

 D
S

directory can be synchronized w
ith Azure AD

 to enable it to
authenticate on-prem

ise users.

A
zure A

D
 Connect sync server

An on-prem
ises com

puter that runs the Azure AD
 Connect

sync service. This service synchronizes inform
ation held in

the on-prem
ises Active D

irectory to Azure AD. For exam
ple,

if you provision or deprovision groups and users
on-prem

ises, these changes propagate to Azure AD.

N
ote:

For sim
plicity, this diagram

 only show
s the connections

directly related to Azure AD, and does not show

protocol-related traffic that m
ay occur as part of

authentication and identity federation. For exam
ple, a w

eb
application m

ay redirect the w
eb brow

ser to authenticate the
request through Azure AD. O

nce authenticated, the request
can be passed back to the w

eb application, w
ith the

appropriate identity inform
ation.

Integrate on-prem
ises A

ctive D
irectory dom

ains w
ith A

zure A
ctive D

irectory
This architecture integrates Azure Active D

irectory (Azure AD
) w

ith an on-prem
ises Active D

irectory dom
ain. Your on-prem

ises AD
 directories are replicated to Azure AD. This allow

s your
applications that run in Azure to authenticate users w

ith their on-prem
ises identities, and enables a single sign-on (SSO

) experience.

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

N
 S G

VM

M
A

N
AG

EM
EN

T SU
BN

ET

N
 S G

Jum
pbox

D
om

ain
Controller

D
om

ain
Controller

Requests from
 external users

Requests from
 on-prem

 users

A
D

 synchronization

A
zure A

D
Connect

Sync

A
zure A

ctive
D

irectory
tenant

A
uthenticated request

PIP

Virtual netw
ork

PIP

Recom
m

endations
• If you have m

ultiple on-prem
ises dom

ains in a forest, store and synchronize inform
ation for the entire forest to a single Azure AD

 tenant. Filter identities to avoid
duplication.

• To achieve high availability for the AD
 Connect sync service, run a secondary staging server.

• If you are likely to synchronize m
ore than 100,000 objects from

 your local directory, use a production version of SQ
L Server, and use SQ

L clustering to achieve high
availability.

• Protect on-prem
ises applications that can be accessed externally. Use the Azure AD

 Application Proxy to provide controlled access to on-prem
ises w

eb applications for
external users.

• Actively m
onitor Azure AD

 for signs of suspicious activity.

• Use conditional access control to deny authentication requests from
 unexpected sources.

A
zure

299

A
rchitecture Com

ponents
O

n-prem
ises netw

ork
The on-prem

ises netw
ork includes local Active D

irectory
servers that can perform

 authentication and authorization
for com

ponents located on-prem
ises.

A
ctive D

irectory servers
These are dom

ain controllers im
plem

enting directory
services (AD

 D
S) running as VM

s in the cloud. These servers
can provide authentication of com

ponents running in your
Azure virtual netw

ork.

A
ctive D

irectory subnet
The AD

 D
S servers are hosted in a separate subnet. N

etw
ork

security group (N
SG) rules protect the AD

 D
S servers and

provide a firew
all against traffic from

 unexpected sources.

A
zure G

atew
ay and A

ctive
D

irectory synchronization
The Azure gatew

ay provides a connection betw
een the

on-prem
ises netw

ork and the Azure VN
et. This can be a VPN

connection or Azure ExpressRoute. All synchronization
requests betw

een the Active D
irectory servers in the cloud

and on-prem
ises pass through the gatew

ay. User-defined
routes (UD

Rs) handle routing for on-prem
ises traffic that

passes to Azure. Traffic to and from
 the Active D

irectory
servers does not pass through the netw

ork virtual appliances
(N

VAs) used in this scenario.

Extend A
ctive D

irectory D
om

ain Services (A
D

 D
S) to A

zure
This architecture extends an on-prem

ises Active D
irectory environm

ent to Azure using Active D
irectory D

om
ain Services (AD

 D
S). This architecture can reduce the latency caused by sending

authentication and local authorization requests from
 the cloud back to AD

 D
S running on-prem

ises. Consider this option if you need to use AD
 D

S features that are not currently
im

plem
ented by Azure AD.G

atew
ay

O
n-prem

ises new
ork

N
 S G

Internal Load
Balancer

AVA
ILA

BLITY
SET

N I C

N I C

N I C

N I C

N
 V A

PRIVATE D
M

Z IN
PRIVATE D

M
Z O

U
T

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER Jum

p Box

A
D

 Server
contoso.com

A
D

 Server
contoso.com

N
 S G

N
 S G

G
ATEW

AY SU
BN

ET

M
A

N
AG

EM
EN

T SU
BN

ET

U
D

R

AVA
ILA

BLITY
SET

VM VM

A
D

 D
S SU

BN
ET

(CO
N

TO
SO

.CO
M

)

N
 S G

N
 S G

N
 V A

N
 S G

AVA
ILA

BLITY
SET

N I C

N I C

N I C

N I C

N
 V A

PU
BLIC D

M
Z IN

PU
BLIC D

M
Z O

U
T

N
 S G

N
 V A

PIP

W
eb app request

Authentication request

Virtual netw
ork

Recom
m

endations
• D

eploy at least tw
o VM

s running AD
 D

S as dom
ain controllers and add them

 to an availability set.

• For VM
 size, use the on-prem

ises AD
 D

S m
achines as a starting point, and pick the closest Azure VM

 sizes.

• Create a separate virtual data disk for storing the database, logs, and SYSVO
L for Active D

irectory.

• Configure the VM
 netw

ork interface (N
IC) for each AD

 D
S server w

ith a static private IP address for full dom
ain nam

e service (D
N

S) support.

• M
onitor the resources of the dom

ain controller VM
s as w

ell as the AD
 D

S Services and create a plan to quickly correct any problem
s.

• Perform
 regular AD

 D
S backups. D

on't sim
ply copy the VH

D
 files of dom

ain controllers, because the AD
 D

S database file on the VH
D

 m
ay not be in a consistent state

w
hen it's copied.

• D
o not shut dow

n a dom
ain controller VM

 using Azure portal. Instead, shut dow
n and restart from

 the guest operating system
.

• Use either BitLocker or Azure disk encryption to encrypt the disk hosting the AD
 D

S database.

• Azure disk encryption to encrypt the disk hosting the AD
 D

S database.

A
zure

300

A
rchitecture Com

ponents
O

n-prem
ises netw

ork
The on-prem

ises netw
ork contains its ow

n Active D
irectory

forest and dom
ains.

A
ctive D

irectory servers
These are dom

ain controllers im
plem

enting dom
ain services

running as VM
s in the cloud. These servers host a forest

containing one or m
ore dom

ains, separate from
 those

located on-prem
ises.

O
ne-w

ay trust relationship
The exam

ple in the diagram
 show

s a one-w
ay trust from

 the
dom

ain in Azure to the on-prem
ises dom

ain. This
relationship enables on-prem

ises users to access resources
in the dom

ain in Azure, but not the other w
ay around. It is

possible to create a tw
o-w

ay trust if cloud users also require
access to on-prem

ises resources.

A
ctive D

irectory subnet
The AD

 D
S servers are hosted in a separate subnet. N

etw
ork

security group (N
SG) rules protect the AD

 D
S servers and

provide a firew
all against traffic from

 unexpected sources.

A
zure gatew

ay
The Azure gatew

ay provides a connection betw
een the

on-prem
ises netw

ork and the Azure VN
et. This can be a VPN

connection or Azure ExpressRoute. For m

ore inform
ation,

see Im
plem

enting a secure hybrid netw
ork architecture in

Azure.

Create an A
ctive D

irectory D
om

ain Services (A
D

 D
S) resource forest in A

zure
This architecture show

s an AD
 D

S forest in Azure w
ith a one-w

ay trust relationship w
ith an on-prem

ises AD
 dom

ain. The forest in Azure contains a dom
ain that does not exist on-prem

ises.
This architecture m

aintains security separation for objects and identities held in the cloud, w
hile allow

ing on-prem
ises identities to access your applications running in Azure.

W
eb app request

Authentication request

AD
D

S trust relationship

G
atew

ay

O
n-prem

ises new
ork

N
 S G

Internal Load
Balancer

AVA
ILA

BLITY
SET

N I C

N I C

N I C

N I C

N
 V A

PRIVATE D
M

Z IN
PRIVATE D

M
Z O

U
T

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER Jum

p Box

A
D

 Server
contoso.com

A
D

 Server
contoso.com

N
 S G

N
 S G

G
ATEW

AY SU
BN

ET

M
A

N
AG

EM
EN

T SU
BN

ET

U
D

R

AVA
ILA

BLITY
SET

VM VM

A
D

 D
S SU

BN
ET

(CO
N

TO
SO

.CO
M

)

N
 S G

N
 S G

N
 V A

N
 S G

AVA
ILA

BLITY
SET

N I C

N I C

N I C

N I C

N
 V A

PU
BLIC D

M
Z IN

PU
BLIC D

M
Z O

U
T

N
 S G

N
 V A

PIP

Virtual netw
ork

Recom
m

endations
• Provision at least tw

o dom
ain controllers for each dom

ain. This enables autom
atic replication betw

een servers.
 • Create an availability set for the VM

s acting as Active D
irectory servers handling each dom

ain. Put at least tw
o servers in this availability set.

• Consider designating one or m
ore servers in each dom

ain as standby operations m
asters in case connectivity to a server acting as a flexible single m

aster operation
(FSM

O
) role fails.

A
zure

301

A
rchitecture Com

ponents
A

D
 D

S subnet
The AD

 D
S servers are contained in their ow

n subnet w
ith netw

ork
security group (N

SG) rules acting as a firew
all.

A
D

 D
S servers

D
om

ain controllers running as VM
s in Azure. These servers provide

authentication of local identities w
ithin the dom

ain.

A
D

 FS subnet
The AD

 FS servers are located w
ithin their ow

n subnet w
ith N

SG rules
acting as a firew

all.

A
D

 FS servers
The AD

 FS servers provide federated authorization and authentication.
In this architecture, they perform

 the follow
ing tasks:

A
D

 FS proxy subnet
The AD

 FS proxy servers can be contained w
ithin their ow

n subnet,
w

ith N
SG rules providing protection. The servers in this subnet are

exposed to the Internet through a set of netw
ork virtual appliances

that provide a firew
all betw

een your Azure virtual netw
ork and the

Internet.

A
D

 FS w
eb application proxy (W

A
P) servers

These VM
s act as AD

 FS servers for incom
ing requests from

 partner
organizations and external devices. The W

AP servers act as a filter,
shielding the AD

 FS servers from
 direct access from

 the Internet. As
w

ith the AD
 FS servers, deploying the W

AP servers in a farm
 w

ith load
balancing gives you greater availability and scalability than deploying
a collection of stand-alone servers.

Partner organization
A partner organization running a w

eb application that requests access
to a w

eb application running in Azure. The federation server at the
partner organization authenticates requests locally, and subm

its secu-
rity tokens containing claim

s to AD
 FS running in Azure. AD

 FS in
Azure validates the security tokens, and if valid can pass the claim

s to
the w

eb application running in Azure to authorize them
.

The AD
 FS servers are configured as a farm

 accessed through an Azure
load balancer. This im

plem
entation im

proves availability and scalabili-
ty. The AD

 FS servers are not exposed directly to the Internet. All
Internet traffic is filtered through AD

 FS w
eb application proxy servers

and a D
M

Z (also referred to as a perim
eter netw

ork).

Receiving security tokens containing claim
s m

ade by a partner
federation server on behalf of a partner user. AD FS verifies that
the tokens are valid before passing the claim

s to the w
eb applica-

tion running in Azure to authorize requests.

The w
eb application running in Azure is the relying party. The

partner federation server m
ust issue claim

s that are understood
by the w

eb application. The partner federation servers are
referred to as account partners, because they subm

it access
requests on behalf of authenticated accounts in the partner
organization. The AD FS servers are called resource partners
because they provide access to resources (the w

eb application).

Authenticating and authorizing incom
ing requests from

 external
users running a w

eb brow
ser or device that needs access to w

eb
applications, by using AD DS and the Active Directory Device
Registration Service.

A
ctive D

irectory Federation Services (A
D

 FS)
This architecture extends an on-prem

ises netw
ork to Azure and uses Active D

irectory Federation Services (AD
 FS) to perform

 federated authentication and authorization. AD
 FS can be hosted on-prem

ises,
but for applications running in Azure, it m

ay be m
ore efficient to replicate AD

 FS in the cloud.
Use this architecture to authenticate users from

 partner organizations, allow
 users to authenticate from

 outside of the organizational firew
all, or allow

 users to connect from
 authorized m

obile devices.

W
eb app request

Authentication request

Federated authentication
request

G
atew

ay

Partner netw
ork

G
ATEW

AY SU
BN

ET

Jum
p Box

N
 S G

M
A

N
AG

EM
EN

T SU
BN

ET
U

D
R

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

N
 S G

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

N
 S G

N
 S G

Internal Load
Balancer

AVA
ILA

BLITY
SET

N I C

N I C

N I C

N I C

PRIVATE D
M

Z IN
PRIVATE D

M
Z O

U
T

N
 S G

N
 V A

N
 V A

N
 S G

AVA
ILA

BLITY
SET

N I C

N I C

N I C

N I C

PU
BLIC D

M
Z IN

PU
BLIC D

M
Z O

U
T

N
 S G

N
 V A

N
 V A

PIP

PIP

Federation
server

O
n-prem

ises new
ork

Virtual netw
ork

Recom
m

endations
• For VM

 size, use the on-prem
ises AD

 FS m
achines as a starting point, and

pick the closest Azure VM
 sizes.

 • Create separate Azure availability sets for the AD
 FS and W

AP VM
s, w

ith at
least tw

o update dom
ains and tw

o fault dom
ains.

• Place AD
 FS servers and W

AP servers in separate subnets w
ith their ow

n
firew

alls. Use N
SG rules to define firew

all rules.
 • Configure the netw

ork interface for each of the VM
s hosting AD

 FS and
W

AP servers w
ith static private IP addresses.

• Prevent direct exposure of the AD
 FS servers to the Internet.

• D
o not join the W

AP servers to the dom
ain.

A
zure

302

Hybrid Network
These reference architectures show proven practices for creating a robust
network connection between an on-premises network and Azure.

You have hybrid applications with light
traffic between on-premises hardware
and the cloud.

VPN

ExpressRoute

ExpressRoute with VPN failover

Your hybrid applications are running
large-scale, mission-critical workloads
that require a high degree of scalability.

You have hybrid applications that need the
higher bandwidth of ExpressRoute, and
require highly available network
connectivity.

Consider this architectureFor this scenario

CHAPTER 8 | Azure reference architectures

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/vpn
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/expressroute
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/expressroute-vpn-failover

303

A
rchitecture Com

ponents
O

n-prem
ises netw

ork
A private local-area netw

ork running w
ithin an organization.

VPN
 appliance

A device or service that provides external connectivity to the
on-prem

ises netw
ork. The VPN

 appliance m
ay be a hardw

are
device, or it can be a softw

are solution such as the Routing
and Rem

ote Access Service (RRAS) in W
indow

s Server 2012.
For a list of supported VPN

 appliances and inform
ation on

configuring them
 to connect to an Azure VPN

 gatew
ay, see

the instructions for the selected device in the article About
VPN

 devices for Site-to-Site VPN
 Gatew

ay connections.

Virtual netw
ork (VN

et)

The cloud application and the com
ponents for the Azure

VPN
 gatew

ay reside in the sam
e VN

et.

A
zure VPN

 gatew
ay

The VPN
 gatew

ay service enables you to connect the VN
et

to the on-prem
ises netw

ork through a VPN
 appliance. For

m
ore inform

ation, see Connect an on-prem
ises netw

ork to a
M

icrosoft Azure virtual netw
ork. The VPN

 gatew
ay includes

the follow
ing elem

ents:

Cloud A
pplication

The application hosted in Azure. It m
ight include m

ultiple
tiers, w

ith m
ultiple subnets connected through Azure load

balancers. For m
ore inform

ation about the application
infrastructure, see Running W

indow
s VM

 w
orkloads and

Running Linux VM
 w

orkloads.

Internal load balancer

N
etw

ork traffic from
 the VPN

 gatew
ay is routed to the cloud

application through an internal load balancer. The load
balancer is located in the front-end subnet of the
application.

Virtual netw
ork gatew

ay

A resource that provides a virtual VPN
 appliance for the

VN
et. It is responsible for routing traffic from

 the
on-prem

ises netw
ork to the VN

et.

Local netw
ork gatew

ay

An abstraction of the on-prem
ises VPN

 appliance.
N

etw
ork traffic from

 the cloud application to the
on-prem

ises netw
ork is routed through this gatew

ay.

Connection

The connection has properties that specify the
connection type (IPSec) and the key shared w

ith the
on-prem

ises VPN
 appliance to encrypt traffic.

G
atew

ay subnet

The virtual netw
ork gatew

ay is held in its ow
n subnet,

w
hich is subject to various requirem

ents, described in
the Recom

m
endations section below.

G
atew

ay

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

Jum
p Box

N
 S G

N
 S G

G
ATEW

AY SU
BN

ET

M
A

N
AG

EM
EN

T SU
BN

ET

AVA
ILA

BLITY
SET

VMVMVM

BU
SIN

ESS TIER

N
 S G

AVA
ILA

BLITY
SET

VMVMVM

D
ATA

 TIER

N
 S G

VPN
 G

atew
ay

O
n-prem

ises new
ork

Virtual netw
ork

 Connect an on-prem
ises netw

ork to A
zure using a VPN

 gatew
ay

This architecture extends an on-prem
ises netw

ork to Azure, using a site-to-site virtual private netw
ork (VPN

). Traffic flow
s betw

een the on-prem
ises netw

ork and the Azure Virtual N
etw

ork
(VN

et).

Recom
m

endations
• Create an Azure VN

et w
ith an address space large enough for all of your required resources, w

ith room
 for grow

th in case m
ore VM

s are needed in the future. The
address space of the VN

et m
ust not overlap w

ith the on-prem
ises netw

ork.
 • The virtual netw

ork gatew
ay requires a subnet nam

ed Gatew
aySubnet. D

o not deploy any VM
s to the gatew

ay subnet. Also, do not assign an N
SG to this subnet, as it w

ill
cause the gatew

ay to stop functioning.

• Create a policy-based gatew
ay if you need to closely control how

 requests are routed based on policy criteria such as address prefixes. Create a route-based gatew
ay if

you connect to the on-prem
ises netw

ork using RRAS, support m
ulti-site or cross-region connections, or im

plem
ent VN

et-to-VN
et connections.

• Ensure that the on-prem
ises routing infrastructure is configured to forw

ard requests intended for addresses in the Azure VN
et to the VPN

 device.

• O
pen any ports required by the cloud application in the on-prem

ises netw
ork.

• If you need to ensure that the on-prem
ises netw

ork rem
ains available to the Azure VPN

 gatew
ay, im

plem
ent a failover cluster for the on-prem

ises VPN
 gatew

ay.

• If your organization has m
ultiple on-prem

ises sites, create m
ulti-site connections to one or m

ore Azure VN
ets. This approach requires dynam

ic (route-based) routing, so
m

ake sure that the on-prem
ises VPN

 gatew
ay supports this feature.

• Generate a different shared key for each VPN
 gatew

ay. Use a strong shared key to help resist brute-force attacks.

• If you need higher bandw
idth than a VPN

 connection supports, consider using an Azure ExpressRoute connection instead.

A
zure

304

A
rchitecture Com

ponents
O

n-prem
ises netw

ork
A private local-area netw

ork running w
ithin an organization.

ExpressRoute circuit

A layer 2 or layer 3 circuit supplied by the connectivity
provider that joins the on-prem

ises netw
ork w

ith Azure
through the edge routers. The circuit uses the hardw

are
infrastructure m

anaged by the connectivity provider.

Local edge routers

Routers that connect the on-prem
ises netw

ork to the circuit
m

anaged by the provider. D
epending on how

 your
connection is provisioned, you m

ay need to provide the
public IP addresses used by the routers.

M
icrosoft edge routers

Tw
o routers in an active-active highly available configuration.

These routers enable a connectivity provider to connect their
circuits directly to their datacenter. D

epending on how
 your

connection is provisioned, you m
ay need to provide the

public IP addresses used by the routers.

A
zure virtual netw

orks (VN
ets)

Each VN
et resides in a single Azure region, and can host

m
ultiple application tiers. Application tiers can be

segm
ented using subnets in each VN

et.

A
zure public services

Azure services that can be used w
ithin a hybrid application.

These services are also available over the Internet, but
accessing them

 using an ExpressRoute circuit provides low

latency and m
ore predictable perform

ance, because traffic
does not go through the Internet. Connections are
perform

ed using public peering, w
ith addresses that are

either ow
ned by your organization or supplied by your

connectivity provider.

O
ffice 365 services

The publicly available O
ffice 365 applications and services

provided by M
icrosoft. Connections are perform

ed using
M

icrosoft peering, w
ith addresses that are either ow

ned by
your organization or supplied by your connectivity provider.
You can also connect directly to M

icrosoft CRM
 O

nline
through M

icrosoft peering.

Connectivity providers (not show
n)

Com
panies that provide a connection either using layer 2 or

layer 3 connectivity betw
een your datacenter and an Azure

datacenter.

O
n-prem

ises new
ork

corporate netw
ork

Local
edge
routers

Private peering

Public peering

M
icrosoft peering

M
icrosoft

edge
routers

ExpressRoute circuit

A
zure Virtual netw

orks

A
zure public services

O
ffice 365 services

Connect an on-prem
ises netw

ork to A
zure using ExpressRoute

This architecture extends an on-prem
ises netw

ork to Azure, using Azure ExpressRoute. ExpressRoute connections use a private, dedicated connection through a third-party connectivity
provider. The private connection extends your on-prem

ises netw
ork into Azure.

Recom
m

endations
• Ensure that your organization has m

et the ExpressRoute prerequisite requirem
ents for connecting to Azure. See ExpressRoute prerequisites &

 checklist.

• Create an Azure VN
et w

ith an address space large enough for all of your required resources, w
ith room

 for grow
th in case m

ore VM
s are needed in the future. The

address space of the VN
et m

ust not overlap w
ith the on-prem

ises netw
ork.

• The virtual netw
ork gatew

ay requires a subnet nam
ed Gatew

aySubnet. D
o not deploy any VM

s to the gatew
ay subnet. Also, do not assign an N

SG to this subnet, as it w
ill

cause the gatew
ay to stop functioning.

• Although som
e providers allow

 you to change your bandw
idth, m

ake sure you pick an initial bandw
idth that surpasses your needs and provides room

 for grow
th.

• Consider the follow
ing options for high availability:

If you're using a layer 2 connection, deploy redundant routers in your on-prem

ises netw
ork in an active-active configuration. Connect the prim

ary circuit to one router, and the secondary

circuit to the other.

If you're using a layer 3 connection, verify that it provides redundant BGP sessions that handle availability for you.

Connect the VN

et to m
ultiple ExpressRoute circuits, supplied by different service providers. This strategy provides additional high-availability and disaster recovery capabilities.

Configure a site-to-site VPN

 as a failover path for ExpressRoute. This option only applies to private peering. For Azure and O
ffice 365 services, the Internet is the only failover path.

A
zure

305

A
rchitecture Com

ponents
O

n-prem
ises netw

ork
A private local-area netw

ork running w
ithin an organization.

VPN
 appliance

A device or service that provides external connectivity to the
on-prem

ises netw
ork. The VPN

 appliance m
ay be a hardw

are
device, or it can be a softw

are solution such as the Routing
and Rem

ote Access Service (RRAS) in W
indow

s Server 2012.
For a list of supported VPN

 appliances and inform
ation on

configuring selected VPN
 appliances for connecting to

Azure, see About VPN
 devices for Site-to-Site VPN

 Gatew
ay

connections.

ExpressRoute circuit

A layer 2 or layer 3 circuit supplied by the connectivity
provider that joins the on-prem

ises netw
ork w

ith Azure
through the edge routers. The circuit uses the hardw

are
infrastructure m

anaged by the connectivity provider.

ExpressRoute virtual netw
ork gatew

ay

The ExpressRoute virtual netw
ork gatew

ay enables the VN
et

to connect to the ExpressRoute circuit used for connectivity
w

ith your on-prem
ises netw

ork.

VPN
 virtual netw

ork gatew
ay

The VPN
 virtual netw

ork gatew
ay enables the VN

et to
connect to the VPN

 appliance in the on-prem
ises netw

ork.
The VPN

 virtual netw
ork gatew

ay is configured to accept
requests from

 the on-prem
ises netw

ork only through the
VPN

 appliance. For m
ore inform

ation, see Connect an
on-prem

ises netw
ork to a M

icrosoft Azure virtual netw
ork.

VPN
 connection

The connection has properties that specify the connection
type (IPSec) and the key shared w

ith the on-prem
ises VPN

appliance to encrypt traffic.

A
zure Virtual N

etw
ork (VN

et)

Each VN
et resides in a single Azure region, and can host

m
ultiple application tiers. Application tiers can be

segm
ented using subnets in each VN

et.

Cloud application

The application hosted in Azure. It m
ight include m

ultiple
tiers, w

ith m
ultiple subnets connected through Azure load

balancers. For m
ore inform

ation about the application
infrastructure, see Running W

indow
s VM

 w
orkloads and

Running Linux VM
 w

orkloads.

G
atew

ay subnet

The virtual netw
ork gatew

ays are held in the sam
e subnet.

ExpressRoute circuit

G
atew

ay

Local
Edge

Routers

M
icrosoft
edge

routers

O
n-prem

ises new
ork

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

N
 S G

AVA
ILA

BLITY
SET

VMVMVM

BU
SIN

ESS TIER

N
 S G

AVA
ILA

BLITY
SET

VMVMVM

D
ATA

 TIER

N
 S G

VM

M
A

N
AG

EM
EN

T SU
BN

ET

N
 S G

Jum
pbox

ExpressRoute
G

atew
ay

VPN
 G

atew
ay

Virtual netw
ork

G
ATEW

AY
SU

BN
ET

Connect an on-prem
ises netw

ork to A
zure using ExpressRoute w

ith VPN
 failover

This architecture extends an on-prem
ises netw

ork to Azure by using ExpressRoute, w
ith a site-to-site virtual private netw

ork (VPN
) as a failover connection. Traffic flow

s betw
een the

on-prem
ises netw

ork and the Azure VN
et through an ExpressRoute connection. If there is a loss of connectivity in the ExpressRoute circuit, traffic is routed through an IPSec VPN

 tunnel.

Recom
m

endations
• The recom

m
endations from

 the previous tw
o architectures apply to this architecture.

• After you establish the virtual netw
ork gatew

ay connections, test the environm
ent. First m

ake sure you can connect from
 your on-prem

ises netw
ork to your Azure VN

et.
This connection w

ill use ExpressRoute. Then contact your provider to stop ExpressRoute connectivity for testing, and verify that you can still connect using the VPN

connection.

A
zure

306

A
rchitecture Com

ponents
O

n-prem
ises netw

ork
A private local-area netw

ork running w
ithin an organization.

G
atew

ay subnet
The virtual netw

ork gatew
ays are held in the sam

e subnet.

VPN
 D

evice
A device or service that provides external connectivity to the
on-prem

ises netw
ork. The VPN

 device m
ay be a hardw

are device, or
a softw

are solution such as the Routing and Rem
ote Access Service

(RRAS) in W
indow

s Server 2012. For a list of supported VPN
 applianc-

es and inform
ation on configuring selected VPN

 appliances for con-
necting to Azure, see About VPN

 devices for Site-to-Site VPN
 Gate-

w
ay connections.

H
ub Vnet

Azure VN
et used as the hub in the hub-spoke topology. The hub is

the central point of connectivity to your on-prem
ises netw

ork, and a
place to host services that can be consum

ed by the different w
ork-

loads hosted in the spoke VN
ets.

Spoke Vnets
O

ne or m
ore Azure VN

ets that are used as spokes in the hub-spoke
topology. Spokes can be used to isolate w

orkloads in their ow
n

VN
ets, m

anaged separately from
 other spokes. Each w

orkload m
ight

include m
ultiple tiers, w

ith m
ultiple subnets connected through

Azure load balancers. For m
ore inform

ation about the application
infrastructure, see Running W

indow
s VM

 w
orkloads and Running

Linux VM
 w

orkloads.

Vnet peering
Tw

o VN
ets in the sam

e Azure region can be connected using a peer-
ing connection. Peering connections are non-transitive, low

 latency
connections betw

een VN
ets. O

nce peered, the VN
ets exchange traffic

by using the Azure backbone, w
ithout the need for a router. In a

hub-spoke netw
ork topology, you use VN

et peering to connect the
hub to each spoke.

Shared services subnet
A subnet in the hub VN

et used to host services that can be shared
am

ong all spokes, such as D
N

S or AD
 D

S.

N
ote:

The deploym
ent scripts for this reference architecture use a VPN

gatew

ay for connectivity, and a VN
et in Azure to sim

ulate your
on-prem

ises netw
ork.

VPN
 virtual netw

ork gatew
ay

or ExpressRoute gatew
ay

The virtual netw
ork gatew

ay enables the VN
et to connect to the VPN

device, or ExpressRoute circuit, used for connectivity w

ith your
on-prem

ises netw
ork. For m

ore inform
ation, see Connect an

on-prem
ises netw

ork to a M
icrosoft Azure virtual netw

ork.

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

N
 S G

AVA
ILA

BLITY
SET

VMVMVM

AVA
ILA

BLITY
SET

D
N

S

VMVM
W

EB TIER

SH
A

RED
 SERVICES

N
 S G

N
 S G

ExpressRoute
G

atew
ay

G
ATEW

AY SU
BN

ET

O
n-prem

ise netw
ork

D
N

S Services
Backend System

s

PERIM
ETER

SERVICES

VPN
 D

evice

CLO
U

D
 ACCESS

PO
IN

T

Peering

Peering

H
ub Virtual N

etw
ork

Spoke1 Virtual N
etw

ork

Spoke2 Virtual N
etw

ork

Im
plem

ent a hub-spoke netw
ork topology in A

zure
In this architecture, the hub is an Azure virtual netw

ork (VN
et) that acts as a central point of connectivity to your on-prem

ises netw
ork. The spokes are VN

ets that peer w
ith the hub, and can

be used to isolate w
orkloads.

 Reasons to consider this architecture :

Reduce costs by centralizing services shared services such as netw
ork virtual appliances (N

VAs) and D
N

S servers.

O
vercom

e subscriptions lim
its by peering VN

ets from
 different subscriptions to the central hub.

Separate concerns betw

een central IT (SecO
ps, InfraO

ps) and w
orkloads (D

evO
ps).

Recom
m

endations
• The hub VN

et, and each spoke VN
et, can be im

plem
ented in different resource groups, and even different subscriptions, as long as they belong to the sam

e Azure Active
D

irectory (Azure AD
) tenant in the sam

e Azure region. This allow
s for a decentralized m

anagem
ent of each w

orkload, w
hile sharing services m

aintained in the hub VN
et.

• A hub-spoke topology can be used w
ithout a gatew

ay, if you don't need connectivity w
ith your on-prem

ises netw
ork.

• If you require connectivity betw
een spokes, consider im

plem
enting an N

VA for routing in the hub, and using user defined routes (UD
Rs) in the spoke to forw

ard traffic to
the hub.

• M
ake sure to consider the lim

itation on the num
ber of VN

et peerings per VN
et in Azure. If you need m

ore spokes than this lim
it, consider creating a

hub-spoke-hub-spoke topology, w
here the first level of spokes also act as hubs.

• Consider w
hat services are shared in the hub, to ensure the hub scales to the num

ber of spokes.

A
zure

307

Network DMZ
These reference architectures show proven practices for creating a
network DMZ that protects the boundary between an Azure virtual
network and an on-premises network or the Internet.

CHAPTER 8 | Azure reference architectures

308

A
rchitecture Com

ponents
O

n-prem
ise N

ew
ork

A
zure Virtual N

etw
ork (VN

et)

G
atew

ay

N
etw

ork Virtual A
ppliance (N

VA
)

W
eb Tier, Business Tier, and D

ata Tier Subnets

A private local-area netw
ork im

plem
ented in an

organization.

The VN
et hosts the application and other resources running

in Azure.

The gatew
ay provides connectivity betw

een the routers in
the on-prem

ises netw
ork and the VN

et.

N
VA is a generic term

 that describes a VM
 perform

ing tasks
such as allow

ing or denying access as a firew
all, optim

izing
w

ide area netw
ork (W

AN
) operations (including netw

ork
com

pression), custom
 routing, or other netw

ork
functionality.

Subnets hosting the VM
s and services that im

plem
ent an

exam
ple 3-tier application running in the cloud. See Running

W
indow

s VM
s for an N

-tier architecture on Azure for m
ore

inform
ation.

U
ser D

efined Routes
User defined routes define the flow

 of IP traffic w
ithin Azure

VN
ets.

N
O

TE: D
epending on the requirem

ents of your VPN

connection, you can configure Border Gatew
ay Protocol

(BGP) routes instead of using UD
Rs to im

plem
ent the

forw
arding rules that direct traffic back through the

on-prem
ises netw

ork.

M
anagem

ent Subnet
This subnet contains VM

s that im
plem

ent m
anagem

ent and
m

onitoring capabilities for the com
ponents running in the

VN
et.

G
atew

ay

O
n-prem

ises new
ork

Virtual netw
ork

N
 S G

Internal Load
Balancer

AVA
ILA

BLITY
SET

N I C

N I C

N I C

N I C

PRIVATE D
M

Z IN
10.0.0.0/27

PRIVATE D
M

Z O
U

T
10.0.0.32/27

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

10.0.1.0/24

Jum
p Box

N
 S G

N
 S G G

ATEW
AY SU

BN
ET

10.0.255.224/27

M
A

N
AG

EM
EN

T SU
BN

ET
10.0.0.128/25

U
D

R

AVA
ILA

BLITY
SET

VMVMVM

BU
SIN

ESS TIER
10.0.2.0/24

N
 S G

AVA
ILA

BLITY
SET

VMVMVM

D
ATA

 TIER
10.0.3.0/24

N
 S G

N
 S G

N
 V A

N
 V A

D
M

Z betw
een A

zure and your on-prem
ises datacenter

This architecture im
plem

ents a D
M

Z (also called a perim
eter netw

ork) betw
een an on-prem

ises netw
ork and an Azure virtual netw

ork. The D
M

Z includes highly available netw
ork virtual

appliances (N
VAs) to im

plem
ent security functionality such as firew

alls and packet inspection. All outgoing traffic from
 the VN

et is force-tunneled to the Internet through the on-prem
ises

netw
ork, so that it can be audited.

Recom
m

endations
• Use Role-Based Access Control (RBAC) to m

anage the resources in your application.

• O
n-prem

ises traffic passes to the VN
et through a virtual netw

ork gatew
ay. W

e recom
m

end an Azure VPN
 gatew

ay or an Azure ExpressRoute gatew
ay.

• Create a netw
ork security group (N

SG) for the inbound N
VA subnet, and only allow

 traffic originating from
 the on-prem

ises netw
ork.

• Create N
SGs for each subnet to provide a second level of protection in case of an incorrectly configured or disabled N

VA.

• Force-tunnel all outbound Internet traffic through your on-prem
ises netw

ork using the site-to-site VPN
 tunnel, and route to the Internet using netw

ork address
translation (N

AT).
 • D

on't com
pletely block Internet traffic from

 the application tiers, as this w
ill prevent these tiers from

 using Azure PaaS services that rely on public IP addresses, such as VM

diagnostics logging.

• Perform
 all application and resource m

onitoring through the jum
pbox in the m

anagem
ent subnet.

A
zure

309

A
rchitecture Com

ponents
Public IP A

ddress (PIP)

N
etw

ork Virtual A
ppliance (N

VA
)

A
zure Load Balancer

The IP address of the public endpoint. External users
connected to the Internet can access the system

 through this
address.

This architecture includes a separate pool of N
VAs for traffic

originating on the Internet.

All incom
ing requests from

 the Internet pass through the
load balancer and are distributed to the N

VAs in the public
D

M
Z.

Public D
M

Z Inbound Subnet
This subnet accepts requests from

 the Azure load balancer.
Incom

ing requests are passed to one of the N
VAs in the

public D
M

Z.

Public D
M

Z O
utbound Subnet

Requests that are approved by the N
VA pass through this

subnet to the internal load balancer for the w
eb tier.

G
atew

ay

N
 S G

Internal Load
Balancer

A
zure Load
Balancer

AVA
ILA

BLITY
SET

N I C
N I C

N I C
N I C

PRIVATE D
M

Z IN
10.0.0.0/27

PRIVATE D
M

Z O
U

T
10.0.0.32/27

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

10.0.1.0/24

Jum
p Box

N
 S G

N
 S G

G
ATEW

AY SU
BN

ET
10.0.255.224/27

M
A

N
AG

EM
EN

T SU
BN

ET
10.0.0.128/25

U
D

R

AVA
ILA

BLITY
SET

VMVMVM

BU
SIN

ESS TIER
10.0.2.0/24

N
 S G

AVA
ILA

BLITY
SET

VMVMVM

D
ATA

 TIER
10.0.3.0/24

N
 S G

N
 S G

AVA
ILA

BLITY
SET

N I C
N I C

N I C
N I C

PU
BLIC D

M
Z IN

10.0.0.0/27
PU

BLIC D
M

Z O
U

T
10.0.0.32/27

N
 S G

N
 S G

N
 V A

N
 V A

N
 V A

N
 V A

PIP

W
eb app request

O
n-prem

ises new
ork

Virtual netw
ork

D
M

Z betw
een A

zure and the Internet
This architecture im

plem
ents a D

M
Z (also called a perim

eter netw
ork) that accepts Internet traffic to an Azure virtual netw

ork. It also includes a D
M

Z that handles traffic from
 an on-prem

ises
netw

ork. N
etw

ork virtual appliances (N
VAs) im

plem
ent security functionality such as firew

alls and packet inspection.

Recom
m

endations
• Use one set of N

VAs for traffic originating on the Internet, and another for
traffic originating on-prem

ises.
 • Include a layer-7 N

VA to term
inate application connections at the N

VA level
and m

aintain com
patibility w

ith the backend tiers.

• For scalability and availability, deploy the public D
M

Z N
VAs in an availability

set w
ith a load balancer to distribute requests across the N

VAs.

• Even if your architecture initially requires a single N
VA, w

e recom
m

end
putting a load balancer in front of the public D

M
Z from

 the beginning. That
m

akes it easier to scale to m
ultiple N

VAs in the future.

• Log all incom
ing requests on all ports. Regularly audit the logs.

A
zure

310

Managed web
application
These reference architectures show proven practices for web applications
that use Azure App Service and other managed services in Azure.

CHAPTER 8 | Azure reference architectures

311

Basic w
eb application

This architecture show
s a baseline deploym

ent for a w
eb application that uses Azure App Service and Azure SQ

L D
atabase.

A
rchitecture Com

ponents
Resource G

roup
A resource group is a logical container for Azure resources.

A
pp Service A

pp
Azure App Service is a fully m

anaged platform
 for creating

and deploying cloud applications.

A
pp Service Plan

An App Service plan provides the m
anaged virtual m

achines
(VM

s) that host your app. All apps associated w
ith a plan run

on the sam
e VM

 instances.

D
eploym

ent Slot
A deploym

ent slot lets you stage a deploym
ent and then

sw
ap it w

ith the production deploym
ent. That w

ay, you avoid
deploying directly into production. See the M

anageability
section for specific recom

m
endations.

IP A
ddress

The App Service app has a public IP address and a dom
ain

nam
e. The dom

ain nam
e is a subdom

ain of
azurew

ebsites.net, such as contoso.azurew
ebsites.net. To use

a custom
 dom

ain nam
e, such as contoso.com

, create dom
ain

nam
e service (D

N
S) records that m

ap the custom
 dom

ain
nam

e to the IP address. For m
ore inform

ation, see Configure
a custom

 dom
ain nam

e in Azure App Service.

A
zure SQ

L D
atabase

SQ
L D

atabase is a relational database-as-a-service in the
cloud.

Logical Server
In Azure SQ

L D
atabase, a logical server hosts your databases.

You can create m
ultiple databases per logical server.

A
zure Storage

Create an Azure storage account w
ith a blob container to

store diagnostic logs.

A
zure A

ctive D
irectory (A

zure A
D

)
Use Azure AD

 or another identity provider for
authentication.

A
pp Service A

pp

D
eploym

ent Slots

Validate
D

eploym
ent

IP A
ddress

Instances

A
pp Service Plan

A
zure SQ

L D
atabase

Storage A
ccount

Last-know
n good

Production

Staging

Logical Server

Blob Container

D
atabase

D
atabase

A
pp Logs

W
eb Server

Logs

Resource
G

roup

Source
Control

A
zure A

ctive
D

irectory

D
eploy

A
ccess Token

A
uthenticate

Recom
m

endations
• Use the Standard or Prem

ium
 tiers, because they support scale out, autoscale, and secure sockets layer (SSL).

 • Provision the App Service plan and the SQ
L D

atabase in the sam
e region to m

inim
ize netw

ork latency.

• Enable autoscaling. If your application has a predictable, regular w
orkload, schedule the instance counts ahead of tim

e. If the w
orkload is not predictable, use rule-based

autoscaling to react to changes in load.

• Create a staging slot to deploy updates. By using a staging slot, you can verify the deploym
ent succeeded, before sw

apping it into production. Using a staging slot also
ensures that all instances are w

arm
ed up before being sw

apped into production.

• D
on't use slots on your production deploym

ent for testing, because all apps w
ithin the sam

e App Service plan share the sam
e VM

 instances. Instead, put test
deploym

ents into a separate App Service plan to isolate them
 from

 the production version.

• Store configuration settings as app settings. D
efine the app settings in your Resource M

anager tem
plates, or using Pow

erShell. N
ever check passw

ords, access keys, or
connection strings into source control. Instead, pass these as param

eters to a deploym
ent script that stores these values as app settings.

• Consider using App Service authentication to im
plem

ent authentication w
ith an identity provider such as Azure Active D

irectory, Facebook, Google, or Tw
itter.

• Use SQ
L D

atabase point-in-tim
e restore to recover from

 hum
an error by returning the database to an earlier point in tim

e. Use geo-restore to recover from
 a service

outage by restoring a database from
 a geo-redundant backup.

A
zure

312

A
rchitecture Com

ponents
Resource G

roup
A resource group is a logical container for Azure resources.

W
eb A

pp and A
PI A

pp
A typical m

odern application m
ight include both a w

ebsite
and one or m

ore RESTful w
eb APIs. A w

eb API m
ight be

consum
ed by brow

ser clients through AJAX, by native client
applications, or by server-side applications. For
considerations on designing w

eb APIs, see API design
guidance.

W
ebJob

Use Azure W
ebJobs to run long-running tasks in the

background. W
ebJobs can run on a schedule, continously, or

in response to a trigger, such as putting a m
essage on a

queue. A W
ebJob runs as a background process in the

context of an App Service app.

Q
ueue

In the architecture show
n here, the application queues

background tasks by putting a m
essage onto an Azure

Q
ueue storage queue. The m

essage triggers a function in the
W

ebJob. Alternatively, you can use Service Bus queues. For a
com

parison, see Azure Q
ueues and Service Bus queues -

com
pared and contrasted.

Cache
Store sem

i-static data in Azure Redis Cache.

CD
N

Use Azure Content D
elivery N

etw
ork (CD

N
) to cache publicly

available content for low
er latency and faster delivery of

content.

D
ata Storage

Use Azure SQ
L D

atabase for relational data. For
non-relational data, consider a N

oSQ
L store, such as Cosm

os
D

B.

A
zure Search

Use Azure Search to add search functionality such as search
suggestions, fuzzy search, and language-specific search.
Azure Search is typically used in conjunction w

ith another
data store, especially if the prim

ary data store requires strict
consistency. In this approach, store authoritative data in the
other data store and the search index in Azure Search. Azure
Search can also be used to consolidate a single search index
from

 m
ultiple data stores.

Em
ail/SM

S
Use a third-party service such as SendGrid or Tw

ilio to send
em

ail or SM
S m

essages instead of building this functionality
directly into the application.

D
ata Storage

SQ
L D

atabase
D

ocum
ent D

B

{ }

Resource
G

roup

A
zure A

ctive
D

irectory A
uthentication

A
pp Service

Plan

W
eb A

pp

Em
ail/SM

S
Service

A
pp Service Plan

A
PI A

pp

A
zure Search

Content D
elivery

N
etw

ork

W
ebJob

W
eb Front End

Redis Cache

Edge Servers

Logs

Storage
A

ccount

Q
ueue

Storage
A

ccount

Static
Content

Storage
A

ccount

Blob

Im
proved scalability in a w

eb application
This architecture builds on the one show

n in “Basic w
eb application” and adds elem

ents to im
prove scalability and perform

ance.

Recom
m

endations
• Use Azure W

ebJobs to run long-running tasks in the background. W
ebJobs can run on a schedule, continuously, or in response to a trigger, such as putting a m

essage
on a queue.

• Consider deploying resource intensive W
ebJobs to a separate App Service plan. This provides dedicated instances for the W

ebJob.

• Use Azure Redis Cache to cache sem
i-static transaction data, session state, and H

TM
L output.

• Use Azure CD
N

 to cache static content. The m
ain benefit of a CD

N
 is to reduce latency for users, because content is cached at an edge server that is geographically close

to the user. CD
N

 can also reduce load on the application, because that traffic is not being handled by the application.

• Choose a data store based on application requirem
ents. D

epending on the scenario, you m
ight use m

ultiple stores. For m
ore guidance, see Choose the right data store.

 • If you are using Azure SQ
L D

atabase, consider using elastic pools. Elastic pools enable you to m
anage and scale m

ultiple databases that have varying and unpredictable
usage dem

ands.

• Also consider using Elastic D
atabase tools to shard the database. Sharding allow

s you to scale out the database horizontally.

• Use Transparent D
ata Encryption to encrypt data at rest in Azure SQ

L D
atabase.

A
zure

313

Run a w
eb application in m

ultiple regions
This architecture show

s a w
eb application running on Azure App Service in tw

o regions to achieve high availability. If an outage occurs in the prim
ary region, the application can fail over to the secondary region.

A
rchitecture Com

ponents
Prim

ary and Secondary Regions
This architecture uses tw

o regions to achieve higher
availability. The application is deployed to each region.
D

uring norm
al operations, netw

ork traffic is routed to the
prim

ary region. If the prim
ary region becom

es unavailable,
traffic is routed to the secondary region.

A m
ulti-region architecture can provide higher availability

than deploying to a single region. If a regional outage affects
the prim

ary region, you can use Traffic M
anager to fail over

to the secondary region. This architecture can also help if an
individual subsystem

 of the application fails.

Active/passive w
ith hot standby. Traffic goes to one region,

w
hile the other w

aits on hot standby. H
ot standby m

eans the
VM

s in the secondary region are allocated and running at all
tim

es.

Active/passive w
ith cold standby. Traffic goes to one region,

w
hile the other w

aits on cold standby. Cold standby m
eans

the VM
s in the secondary region are not allocated until

needed for failover. This approach costs less to run, but w
ill

generally take longer to com
e online during a failure.

Active/active. Both regions are active, and requests are load
balanced betw

een them
. If one region becom

es unavailable,
it is taken out of rotation.

This reference architecture focuses on active/passive w
ith hot

standby, using Traffic M
anager for failover.

There are several general approaches to achieving high
availability across regions:

should content below
 be included?

A
zure Traffice M

anager
Traffic M

anager routes incom
ing requests to the prim

ary
region. If the application running that region becom

es
unavailable, Traffic M

anager fails over to the secondary
region.

G
eo-replication

of SQ
L D

atabase and Cosm
os D

B.

Region 1 (A
ctive)

A
pp Service

Plan

W
eb A

pp

A
pp Service Plan

A
PI A

pp

A
zure Search

W
ebJob

Redis Cache

Logs

Storage
A

ccount

Q
ueue

Storage
A

ccount

Static
Content

Storage
A

ccount
Content D

elivery
N

etw
ork (CD

N
)

D
ata Storage

SQ
L D

atabase
D

ocum
ent D

B

{ }

Region 2 (Standby)
Read-only
replica

G
eo-replication

Internet

A
pp Service

Plan

W
eb A

pp

A
pp Service Plan

A
PI A

pp

A
zure Search

W
ebJob

Redis Cache

Logs

Storage
A

ccount

Q
ueue

Storage
A

ccount

D
ata Storage

SQ
L D

atabase
D

ocum
ent D

B

{ }

Recom
m

endations
• Each Azure region is paired w

ith another region w
ithin the sam

e geography. In general, choose regions from
 the sam

e regional pair. If there is a broad outage, recovery of at least one region out of every
pair is prioritized.
 • Configure Traffic M

anager to use priority routing, w
hich routes all requests to the prim

ary region. If the prim
ary region becom

es unreachable, Traffic M
anager autom

atically fails over to the secondary
region.

• Traffic M
anager uses an H

TTP (or H
TTPS) probe to m

onitor the availability of each region. Create a health probe endpoint that reports the overall health of the application.

• Traffic M
anager is a possible failure point in the system

. Review
 the Traffic M

anager SLA, and determ
ine w

hether using Traffic M
anager alone m

eets your business requirem
ents for high availability. If not,

consider adding another traffic m
anagem

ent solution as a failback.

• For Azure SQ
L D

atabase, use Active Geo-Replication to create a readable secondary replica in a different region. Fail over to a secondary database if your prim
ary database fails or needs to be taken offline.

• Cosm
os D

B also supports geo-replication across regions. O
ne region is designated as w

ritable and the others are read-only replicas. If there is a regional outage, you can fail over by selecting another
region to be the w

rite region.

• For Azure Storage, use read-access geo-redundant storage (RA-GRS).

A
zure

314

Running Linux
VM workloads
These reference architectures show proven practices for running Linux
VMs in Azure.

CHAPTER 8 | Azure reference architectures

315

A
rchitecture Com

ponents

Recom
m

endations
• For best disk I/O

 perform
ance, w

e recom
m

end Prem
ium

 Storage, w
hich stores data on solid-state drives (SSD

s).
 • Use M

anaged disks, w
hich do not require a storage account. You sim

ply specify the size and type of disk and it is deployed in a highly available w
ay.

• Attach a data disk for persistent storage of application data.

• Enable m
onitoring and diagnostics, including health m

etrics, diagnostics infrastructure logs, and boot diagnostics.

• Add an N
SG to the subnet to allow

/deny netw
ork traffic to the subnet. To enable SSH

, add a rule to the N
SG that allow

s inbound traffic to TCP port 22.

• Reserve a static IP address if you need a fixed IP address that w
on't change —

 for exam
ple, if you need to create an A record in D

N
S, or need the IP address to be added

to a safe list.

• For higher availability, deploy m
ultiple VM

s behind a load balancer. See [Load balanced VM
s reference architecture]

• Use Azure Security Center to get a central view
 of the security state of your Azure resources. Security Center m

onitors potential security issues and provides a
com

prehensive picture of the security health of your deploym
ent.

• Consider Azure D
isk Encryption if you need to encrypt the O

S and data disks.

Resource G
roup

A resource group is a container that holds related resources.
You usually create resource groups for different resources in
a solution based on their lifetim

e, and w
ho w

ill m
anage the

resources. For a single VM
 w

orkload, you m
ay create a single

resource group for all resources.

VM
Azure supports running various popular Linux distributions,
including CentO

S, D
ebian, Red H

at Enterprise, Ubuntu, and
FreeBSD. For m

ore inform
ation, see Azure and Linux. You can

provision a VM
 from

 a list of published im
ages or from

 a
virtual hard disk (VH

D
) file that you upload to Azure Blob

storage.

O
S disk

The O
S disk is a VH

D
 stored in Azure Storage. That m

eans it
persists even if the host m

achine goes dow
n. The O

S disk is
/dev/sda1.

D
ata disks

A data disk is a persistent VH
D

 used for application data.
D

ata disks are stored in Azure Storage, like the O
S disk.

Virtual netw
ork (VN

et) and subnet
Every VM

 in Azure is deployed into a VN
et that is further

divided into subnets.

Public IP address
A public IP address is needed to com

m
unicate w

ith the VM

—
 for exam

ple over SSH
.

N
etw

ork interface (N
IC)

The N
IC enables the VM

 to com
m

unicate w
ith the virtual

netw
ork.

N
etw

ork security group (N
SG

)
The N

SG is used to allow
/deny netw

ork traffic to the subnet.
You can associate an N

SG w
ith an individual N

IC or w
ith a

subnet. If you associate it w
ith a subnet, the N

SG rules apply
to all VM

s in that subnet.

D
iagnostics

D
iagnostic logging is crucial for m

anaging and
troubleshooting the VM

.

Tem
porary disk

The VM
 is created w

ith a tem
porary disk. This disk is stored

on a physical drive on the host m
achine. It is not saved in

Azure Storage, and m
ight be deleted during reboots and

other VM
 lifecycle events. Use this disk only for tem

porary
data, such as page or sw

ap files. The tem
porary disk is

/dev/sdb1 and is m
ounted at /m

nt/resource or /m
nt.

VM

O
S

D
ata 1

D
ata 2

Tem
p

Resource
G

roup

N I C

D
iagnostics

Logs

VH
D

VH
D

VM
 Storage

A
ccount

Logs Storage
A

ccount

VH
D

Physical SSD
on H

ost

SU
BN

ET Virtual netw
ork

Internet

Public IP A
ddress

Run a Linux VM
 on A

zure
This architecture show

s a Linux virtual m
achine (VM

) running on Azure, along w
ith associated netw

orking and storage com
ponents. This architecture can be used to run a single instance,

and is the basis for m
ore com

plex architectures such as n-tier applications.

A
zure

316

A
rchitecture Com

ponents
Availability Set
The availability set contains the VM

s, m
aking the VM

s
eligible for the availability service level agreem

ent (SLA) for
Azure VM

s. For the SLA to apply, the availability set m
ust

include a m
inim

um
 of tw

o VM
s. Availability sets are im

plicit
in scale sets. If you create VM

s outside a scale set, you need
to create the availability set independently.

Virtual N
etw

ork (VN
et) and Subnet

Every VM
 in Azure is deployed into a VN

et that is further
divided into subnets.

A
zure Load Balancer

The load balancer distributes incom
ing Internet requests to

the VM
 instances. The load balancer includes som

e related
resources:

Load Balancer Rules
Used to distribute netw

ork traffic am
ong all the VM

s in the
back-end address pool.

N
etw

ork A
ddress Translation (N

AT) Rules
Used to route traffic to a specific VM

. For exam
ple, to enable

rem
ote desktop protocol (RD

P) to the VM
s, create a separate

N
AT rule for each VM

.

Storage
If you are not using m

anaged disks, storage accounts hold
the VM

 im
ages and other file-related resources, such as VM

diagnostic data captured by Azure.

VM
 Scale set

A VM
 scale set is a set of identical VM

s used to host a
w

orkload. Scale sets allow
 the num

ber of VM
s to be scaled in

or out m
anually, or based on predefined rules.

Public IP A
ddress

A public IP address is needed for the load balancer to
receive Internet traffic.

Front-end Configuration
Associates the public IP address w

ith the load balancer.

Back-end A
ddress Pool

Contains the netw
ork interfaces (N

ICs) for the VM
s that

w
ill receive the incom

ing traffic.

Public IP

A
zure Load
Balancer

AVA
ILA

BLITY
SET

SU
BN

ET
VH

D
s

VM
 1 Storage

A
ccount

VH
D

s
VM

 2 Storage
A

ccount

Logs Storage
A

ccount

D
iagnostics

Logs
VM

 Scaleset

Internet

Virtual netw
ork

Run load-balanced VM
s for scalability and availability

This architecture show
s running several Linux virtual m

achines (VM
s) running behind a load balancer, to im

prove availability and scalability. This architecture can be used for any stateless
w

orkload, such as a w
eb server, and is a building block for deploying n-tier applications.

Recom
m

endations
• Consider using a VM

 scale set if you need to quickly scale out VM
s, or need to autoscale. If you don’t use a scale set, place the VM

s in an availability set.

• Use M
anaged disks, w

hich do not require a storage account. You sim
ply specify the size and type of disk and it is deployed in a highly available w

ay.

• Place the VM
s w

ithin the sam
e subnet. D

o not expose the VM
s directly to the Internet, but instead give each VM

 a private IP address. Clients connect using the public IP
address of the load balancer.

• For incom
ing Internet traffic, the load balancer rules define w

hich traffic can reach the back end. H
ow

ever, load balancer rules don't support IP w
hitelisting, so if you w

ant
to add certain public IP addresses to a w

hitelist, add an N
SG to the subnet.

• The load balancer uses health probes to m
onitor the availability of VM

 instances. If your VM
s run an H

TTP server, create an H
TTP probe. O

therw
ise create a TCP probe.

• Virtual netw
orks are a traffic isolation boundary in Azure. VM

s in one VN
et cannot com

m
unicate directly to VM

s in a different VN
et. VM

s w
ithin the sam

e VN
et can

com
m

unicate, unless you create netw
ork security groups (N

SGs) to restrict traffic.

A
zure

317

A
rchitecture Com

ponents
Availability Sets
Create an availability set for each tier, and provision at least
tw

o VM
s in each tier. This m

akes the VM
s eligible for a

higher service level agreem
ent (SLA) for VM

s.

Subnets
Create a separate subnet for each tier. Specify the address
range and subnet m

ask using CID
R notation.

Load Balancers
Use an Internet-facing load balancer to distribute incom

ing
Internet traffic to the w

eb tier, and an internal load balancer
to distribute netw

ork traffic from
 the w

eb tier to the business
tier.

Jum
pbox

Also called a bastion host. A secure VM
 on the netw

ork that
adm

inistrators use to connect to the other VM
s. The

jum
pbox has an N

SG that allow
s rem

ote traffic only from

public IP addresses on a safe list. The N
SG should perm

it
secure shell (SSH

) traffic.

M
onitoring

M
onitoring softw

are such as N
agios, Zabbix, or Icinga can

give you insight into response tim
e, VM

 uptim
e, and the

overall health of your system
. Install the m

onitoring softw
are

on a VM
 that's placed in a separate m

anagem
ent subnet.

N
SG

s
Use netw

ork security groups (N
SGs) to restrict netw

ork
traffic w

ithin the VN
et. For exam

ple, in the 3-tier architecture
show

n here, the database tier does not accept traffic from

the w
eb front end, only from

 the business tier and the
m

anagem
ent subnet.

A
pache Cassandra D

atabase
Provides high availability at the data tier, by enabling
replication and failover.

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

SU
BN

ET

N
 S G

VM

M
A

N
AG

EM
EN

T SU
BN

ET

N
 S G

A
zure Load
Balancer

D
evO

ps

AVA
ILA

BLITY
SET

VMVMVM

BU
SIN

ESS TIER
SU

BN
ET

N
 S G

AVA
ILA

BLITY
SET

D
ATA

 TIER
SU

BN
ET

N
 S G

Cassandra
Cluster

Jum
pbox

VM
VM

VM

VM VM

VM

VIRTU
A

L N
ETW

O
RK

Internet

Run Linux VM
s for an N

-tier A
pplication

This architecture show
s how

 to deploy Linux virtual m
achines (VM

s) to run an N
-tier application in Azure. For the data tier, this architecture show

s Apache Cassandra, w
hich provides

replication and failover. H
ow

ever you could easily replace Cassandra in this architecture w
ith another database, such as SQ

L Server.

Recom
m

endations
• W

hen you create the VN
et, determ

ine how
 m

any IP addresses your resources in each subnet require.
 • Choose an address range that does not overlap w

ith your on-prem
ises netw

ork, in case you need to set up a gatew
ay betw

een the VN
et and your on-prem

ises netw
ork later.

• D
esign subnets w

ith functionality and security requirem
ents in m

ind. All VM
s w

ithin the sam
e tier or role should go into the sam

e subnet, w
hich can be a security boundary.

• Use N
SG rules to restrict traffic betw

een tiers. For exam
ple, in the 3-tier architecture show

n above, the w
eb tier should not com

m
unicate directly w

ith the database tier.

• D
o not allow

 SSH
 access from

 the public Internet to the VM
s that run the application w

orkload. Instead, all SSH
 access to these VM

s m
ust com

e through the jum
pbox.

• The load balancers distribute netw
ork traffic to the w

eb and business tiers. Scale horizontally by adding new
 VM

 instances. N
ote that you can scale the w

eb and business
tiers independently, based on load.

• At the database tier, having m
ultiple VM

s does not autom
atically translate into a highly available database. For a relational database, you w

ill typically need to use replication
and failover to achieve high availability.

A
zure

318

A
rchitecture Com

ponents
Prim

ary and Secondary Regions
Use tw

o regions to achieve higher availability. O
ne is the

prim
ary region.The other region is for failover.

VN
ets

Create a separate VN
et for each region. M

ake sure the
address spaces do not overlap.

A
pache Cassandra

D
eploy Cassandra in data centers across Azure regions for

high availability. W
ithin each region, nodes are configured in

rack-aw
are m

ode w
ith fault and upgrade dom

ains, for
resiliency inside the region.

A
zure Traffic M

anager
Traffic M

anager routes incom
ing requests to one of the

regions. D
uring norm

al operations, it routes requests to the
prim

ary region. If that region becom
es unavailable, Traffic

M
anager fails over to the secondary region. For m

ore
inform

ation, see the section Traffic M
anager configuration.

Resource G
roup

Create separate resource groups for the prim
ary region, the

secondary region, and for Traffic M
anager. This gives you the

flexibility to m
anage each region as a single collection of

resources. For exam
ple, you could redeploy one region,

w
ithout taking dow

n the other one. Link the resource
groups, so that you can run a query to list all the resources
for the application.

VMVMVM

VM

VMVMVM

BU
SIN

ESS TIER
W

EB TIER

Jum
pbox

VM
VM

VM

VM VM

VM

CA
SSA

N
D

RA

VMVMVM

VM

VMVMVM

BU
SIN

ESS TIER
W

EB TIER

Jum
pbox

VM
VM

VM

VM VM

VM

CA
SSA

N
D

RA

Run Linux VM
s in m

ultiple regions for high availability
This architecture show

s an N
-tier application deployed in tw

o Azure regions. This architecture can provide higher availability than a single region. If an outage occurs in the prim
ary region,

the application can fail over to the secondary region. H
ow

ever, you m
ust consider issues such as data replication and m

anaging failover.

Recom
m

endations
• Each Azure region is paired w

ith another region w
ithin the sam

e geography. In general, choose regions from
 the sam

e regional pair. If there is a broad outage, recovery of at
least one region out of every pair is prioritized.

• Configure Traffic M
anager to use priority routing, w

hich routes all requests to the prim
ary region. If the prim

ary region becom
es unreachable, Traffic M

anager autom
atically

fails over to the secondary region.

• If Traffic M
anager fails over, w

e recom
m

end perform
ing a m

anual failback rather than im
plem

enting an autom
atic failback. Verify that all application subsystem

s are healthy
before failing back.

• Traffic M
anager uses an H

TTP (or H
TTPS) probe to m

onitor the availability of each region. Create a health probe endpoint that reports the overall health of the application.

• Traffic M
anager is a possible failure point in the system

. Review
 the Traffic M

anager SLA, and determ
ine w

hether using Traffic M
anager alone m

eets your business
requirem

ents for high availability. If not, consider adding another traffic m
anagem

ent solution as a failback.

• For the data tier, this architecture show
s Apache Cassandra for data replication and failover. O

ther database system
s have sim

ilar functionality.

• W
hen you update your deploym

ent, update one region at a tim
e to reduce the chance of a global failure from

 an incorrect configuration or an error in the application.

• Test the resiliency of the system
 to failures. M

easure the recovery tim
es and verify they m

eet your business requirem
ents.

• Each Azure region is paired w
ith another region w

ithin the sam
e geography. In general, choose regions from

 the sam
e regional pair. If there is a broad outage, recovery of at least one region out of every

pair is prioritized.
 • Configure Traffic M

anager to use priority routing, w
hich routes all requests to the prim

ary region. If the prim
ary region becom

es unreachable, Traffic M
anager autom

atically fails over to the secondary
region.
 • If Traffic M

anager fails over, w
e recom

m
end perform

ing a m
anual failback rather than im

plem
enting an autom

atic failback. Verify that all application subsystem
s are healthy before failing back.

• Traffic M
anager uses an H

TTP (or H
TTPS) probe to m

onitor the availability of each region. Create a health probe endpoint that reports the overall health of the application.

• Traffic M
anager is a possible failure point in the system

. Review
 the Traffic M

anager SLA, and determ
ine w

hether using Traffic M
anager alone m

eets your business requirem
ents for high availability. If not,

consider adding another traffic m
anagem

ent solution as a failback.

• Create a SQ
L Server Alw

ays O
n Availability Group that includes the SQ

L Server instances in both the prim
ary and secondary regions. Configure the replicas in the secondary region to use asynchronous

com
m

it, for perform
ance reasons.

• If all of the SQ
L Server database replicas in the prim

ary region fail, you can m
anually fail over the availability group. W

ith forced failover, there is a risk of data loss. O
nce the prim

ary region is back online,
take a snapshot of the database and use tablediff to find the differences.

• W
hen you update your deploym

ent, update one region at a tim
e to reduce the chance of a global failure from

 an incorrect configuration or an error in the application.

• Test the resiliency of the system
 to failures. M

easure the recovery tim
es and verify they m

eet your business requirem
ents.

A
zure

319

Running
Windows VM
workloads
These reference architectures show proven practices for running Windows
VMs in Azure.

CHAPTER 8 | Azure reference architectures

320

Public IP A
ddress

N
etw

ork interface (N
IC)

N
etw

ork security group (N
SG

)

D
iagnostics

Tem
porary D

isk

D
ata D

isk

Virtual N
etw

ork (VN
et) and Subnet

Resource G
roup

A resource group is a container that holds related resources.
Create a resource group to hold the resources for this VM

.

A public IP address is needed to com
m

unicate w
ith the

VM
—

for exam
ple over rem

ote desktop (RD
P).

The N
IC enables the VM

 to com
m

unicate w
ith the virtual

netw
ork.

The N
SG is used to allow

/deny netw
ork traffic to the subnet.

You can associate an N
SG w

ith an individual N
IC or w

ith a
subnet. If you associate it w

ith a subnet, the N
SG rules apply

to all VM
s in that subnet.

D
iagnostic logging is crucial for m

anaging and
troubleshooting the VM

.

VM
You can provision a VM

 from
 a list of published im

ages or
from

 a virtual hard disk (VH
D

) file that you upload to Azure
Blob storage.

O
S D

isk
The O

S disk is a VH
D

 stored in Azure Storage. That m
eans it

persists even if the host m
achine goes dow

n.

The VM
 is created w

ith a tem
porary disk (the D

: drive on
W

indow
s). This disk is stored on a physical drive on the host

m
achine. It is not saved in Azure Storage, and m

ight be
deleted during reboots and other VM

 lifecycle events. Use
this disk only for tem

porary data, such as page or sw
ap files.

A data disk is a persistent VH
D

 used for application data.
D

ata disks are stored in Azure Storage, like the O
S disk.

Every VM
 in Azure is deployed into a VN

et that is further
divided into subnets.

Recom
m

endations
• For best disk I/O

 perform
ance, w

e recom
m

end Prem
ium

 Storage, w
hich stores data on solid-state drives (SSD

s).
 • Use M

anaged disks, w
hich do not require a storage account. You sim

ply specify the size and type of disk and it is deployed in a highly available w
ay.

• Attach a data disk for persistent storage of application data.

• Enable m
onitoring and diagnostics, including health m

etrics, diagnostics infrastructure logs, and boot diagnostics.

• Add an N
SG to the subnet to allow

/deny netw
ork traffic to the subnet. To enable rem

ote desktop (RD
P), add a rule to the N

SG that allow
s inbound traffic to TCP port 3389.

• Reserve a static IP address if you need a fixed IP address that w
on't change —

 for exam
ple, if you need to create an A record in D

N
S, or need the IP address to be added to

a safe list.

• For higher availability, deploy m
ultiple VM

s behind a load balancer. See [Load balanced VM
s reference architecture]

• Use Azure Security Center to get a central view
 of the security state of your Azure resources. Security Center m

onitors potential security issues and provides a
com

prehensive picture of the security health of your deploym
ent.

• Consider Azure D
isk Encryption if you need to encrypt the O

S and data disks.

Run a W
indow

s VM
 on A

zure
This architecture show

s a W
indow

s virtual m
achine (VM

) running on Azure, along w
ith associated netw

orking and storage com
ponents. This architecture can be used to run a single instance,

and is the basis for m
ore com

plex architectures such as n-tier applications.

A
rchitecture Com

ponents

VM

O
S

D
ata 1

D
ata 2

Tem
p

Resource
G

roup

N I C

D
iagnostics

Logs

VH
D

VH
D

VM
 Storage

A
ccount

Logs Storage
A

ccount

VH
D

Physical SSD
on H

ost

SU
BN

ET Virtual netw
ork

Internet

Public IP A
ddress

A
zure

321

A
rchitecture Com

ponents

Storage

Resource group
Resource groups are used to group resources so they can be
m

anaged by lifetim
e, ow

ner, and other criteria.

Virtual N
etw

ork (VN
et) and Subnet

Every VM
 in Azure is deployed into a VN

et that is further
divided into subnets.

A
zure Load Balancer

The load balancer distributes incom
ing Internet requests to

the VM
 instances. The load balancer includes som

e related
resources:

Load Balancer Rules
Used to distribute netw

ork traffic am
ong all the VM

s in the
back-end address pool.

VM
 Scale set

A VM
 scale set is a set of identical VM

s used to host a
w

orkload. Scale sets allow
 the num

ber of VM
s to be scaled in

or out m
anually, or based on predefined rules.

Availability Set
The availability set contains the VM

s, m
aking the VM

s
eligible for the availability service level agreem

ent (SLA) for
Azure VM

s. In order for the SLA to apply, the availability set
m

ust include a m
inim

um
 of tw

o VM
s. Availability sets are

im
plicit in scale sets. If you create VM

s outside a scale set,
you need to create the availability set independently.

If you are not using m
anaged disks, storage accounts hold

the VM
 im

ages and other file-related resources, such as VM

diagnostic data captured by Azure.

Public IP A
ddress

A public IP address is needed for the load balancer to
receive Internet traffic.

Front-end Configuration
Associates the public IP address w

ith the load balancer.

Back-end A
ddress Pool

Contains the netw
ork interfaces (N

ICs) for the VM
s that

w
ill receive the incom

ing traffic.

Public IP

A
zure Load
Balancer

AVA
ILA

BLITY
SET

SU
BN

ET
VH

D
s

VM
 1 Storage

A
ccount

VH
D

s
VM

 2 Storage
A

ccount

Logs Storage
A

ccount

D
iagnostics

Logs
VM

 Scaleset

Internet

Virtual netw
ork

Run load-balanced VM
s for scalability and availability

This architecture show
s running several W

indow
s virtual m

achines (VM
s) running behind a load balancer, to im

prove availability and scalability. This architecture can be used for any stateless
w

orkload, such as a w
eb server, and is a building block for deploying n-tier applications.

• Consider using a VM
 scale set if you need to quickly scale out VM

s, or need to autoscale. If you don’t use a scale set, place the VM
s in an availability set.

• Use M
anaged disks, w

hich do not require a storage account. You sim
ply specify the size and type of disk and it is deployed in a highly available w

ay.

• Place the VM
s w

ithin the sam
e subnet. D

o not expose the VM
s directly to the Internet, but instead give each VM

 a private IP address. Clients connect using the public IP
address of the load balancer.

• For incom
ing Internet traffic, the load balancer rules define w

hich traffic can reach the back end. H
ow

ever, load balancer rules don't support IP w
hitelisting, so if you w

ant
to add certain public IP addresses to a w

hitelist, add an N
SG to the subnet.

• The load balancer uses health probes to m
onitor the availability of VM

 instances. If your VM
s run an H

TTP server, create an H
TTP probe. O

therw
ise create a TCP probe.

• Virtual netw
orks are a traffic isolation boundary in Azure. VM

s in one VN
et cannot com

m
unicate directly to VM

s in a different VN
et. VM

s w
ithin the sam

e VN
et can

com
m

unicate, unless you create netw
ork security groups (N

SGs) to restrict traffic.

Recom
m

endations

A
zure

322

A
rchitecture Com

ponents

Subnets

N
SG

s

Availability Sets
Create an availability set for each tier, and provision at least
tw

o VM
s in each tier. This m

akes the VM
s eligible for a

higher service level agreem
ent (SLA) for VM

s.

Create a separate subnet for each tier. Specify the address
range and subnet m

ask using CID
R notation.

Load Balancers
Use an Internet-facing load balancer to distribute incom

ing
Internet traffic to the w

eb tier, and an internal load balancer
to distribute netw

ork traffic from
 the w

eb tier to the
business tier.

Jum
pbox

Also called a bastion host. A secure VM
 on the netw

ork that
adm

inistrators use to connect to the other VM
s. The

jum
pbox has an N

SG that allow
s rem

ote traffic only from

public IP addresses on a safe list. The N
SG should perm

it
rem

ote desktop (RD
P) traffic.

M
onitoring

M
onitoring softw

are such as N
agios, Zabbix, or Icinga can

give you insight into response tim
e, VM

 uptim
e, and the

overall health of your system
. Install the m

onitoring softw
are

on a VM
 that's placed in a separate m

anagem
ent subnet.

Use netw
ork security groups (N

SGs) to restrict netw
ork

traffic w
ithin the VN

et. For exam
ple, in the 3-tier architecture

show
n here, the database tier does not accept traffic from

the w

eb front end, only from
 the business tier and the

m
anagem

ent subnet.

SQ
L Server A

lw
ays O

n Availability G
roup

Provides high availability at the data tier, by enabling
replication and failover.

A
ctive D

irectory D
om

ain Services
(A

D
 D

S) Servers
Prior to W

indow
s Server 2016, SQ

L Server Alw
ays O

n
Availability Groups m

ust be joined to a dom
ain. This is

because Availability Groups depend on W
indow

s Server
Failover Cluster (W

SFC) technology. W
indow

s Server 2016
introduces the ability to create a Failover Cluster w

ithout
Active D

irectory, in w
hich case the AD

 D
S servers are not

required for this architecture. For m
ore inform

ation, see
W

hat's new
 in Failover Clustering in W

indow
s Server 2016.

AVA
ILA

BLITY
SET

VMVMVM

W
EB TIER

SU
BN

ET

N
 S G

VM

M
A

N
AG

EM
EN

T SU
BN

ET
ACTIVE D

IRECTO
RY SU

BN
ET

N
 S G

N
 S G

A
zure Load
Balancer

D
evO

ps

AVA
ILA

BLITY
SET

VMVMVM

BU
SIN

ESS TIER
SU

BN
ET

N
 S G

AVA
ILA

BLITY
SET

VM

BU
SIN

ESS TIER
SU

BN
ET

N
 S G

Jum
pbox

A
D

 D
S

Server
A

D
 D

S
Server

SQ
L Server

(Prim
ary)

SQ
L Server

(Secondary)

File share
w

itness

VIRTU
A

L N
ETW

O
RK

Internet

Run W
indow

s VM
s for an N

-tier application
This architecture show

s how
 to deploy W

indow
s virtual m

achines (VM
s) to run an N

-tier application in Azure. For the data tier, this architecture uses SQ
L Server Alw

ays O
n Availability

Groups, w
hich provide replication and failover.

Recom
m

endations
•

W
hen you create the VN

et, determ
ine how

 m
any IP addresses your resources in each subnet require.

•
Choose an address range that does not overlap w

ith your on-prem
ises netw

ork, in case you need to set up a gatew
ay betw

een the VN
et and your on-prem

ises netw
ork later.

•
D

esign subnets w
ith functionality and security requirem

ents in m
ind. All VM

s w
ithin the sam

e tier or role should go into the sam
e subnet, w

hich can be a security boundary.

•
Use N

SG rules to restrict traffic betw
een tiers. For exam

ple, in the 3-tier architecture show
n above, the w

eb tier should not com
m

unicate directly w
ith the database tier.

•
D

o not allow
 rem

ote desktop (RD
P) access from

 the public Internet to the VM
s that run the application w

orkload. Instead, all RD
P access to these VM

s m
ust com

e through
the jum

pbox.

•
The load balancers distribute netw

ork traffic to the w
eb and business tiers. Scale horizontally by adding new

 VM
 instances. N

ote that you can scale the w
eb and business

tiers independently, based on load.

•
W

e recom
m

end Alw
ays O

n Availability Groups for SQ
L Server high availability. W

hen a SQ
L client tries to connect, the load balancer routes the connection request to the

prim
ary replica. If there is a failover to another replica, the load balancer autom

atically starts routing requests to the new
 prim

ary replica.

A
zure

323

A
rchitecture Com

ponents
Prim

ary and Secondary Regions
Use tw

o regions to achieve higher availability. O
ne is the

prim
ary region. The other region is for failover.

A
zure Traffic M

anager
Traffic M

anager routes incom
ing requests to one of the

regions. D
uring norm

al operations, it routes requests to the
prim

ary region. If that region becom
es unavailable, Traffic

M
anager fails over to the secondary region. For m

ore
inform

ation, see the section Traffic M
anager configuration.

Resource G
roups

Create separate resource groups for the prim
ary region, the

secondary region, and for Traffic M
anager. This gives you the

flexibility to m
anage each region as a single collection of

resources. For exam
ple, you could redeploy one region,

w
ithout taking dow

n the other one. Link the resource
groups, so that you can run a query to list all the resources
for the application.

VN
ets

Create a separate VN
et for each region. M

ake sure the
address spaces do not overlap.

SQ
L Server A

lw
ays O

n Availability G
roup

If you are using SQ
L Server, w

e recom
m

end SQ
L Alw

ays O
n

Availability Groups for high availability. Create a single
availability group that includes the SQ

L Server instances in
both regions.

VPN
 G

atew
ays

Create a VPN
 gatew

ay in each VN
et, and configure a

VN
et-to-VN

et connection, to enable netw
ork traffic betw

een
the tw

o VN
ets. This is required for the SQ

L Alw
ays O

n
Availability Group.

N
ote

Also consider Azure SQ
L D

atabase, w
hich provides a

relational database as a cloud service. W
ith SQ

L D
atabase,

you don't need to configure an availability group or m
anage

failover.

Run W
indow

s VM
s in m

ultiple regions for high availability
This architecture show

s an N
-tier application deployed in tw

o Azure regions. This architecture can provide higher availability than a single region. If an outage occurs in the prim
ary region,

the application can fail over to the secondary region. H
ow

ever, you m
ust consider issues such as data replication and m

anaging failover.

VM

BU
SIN

ESS TIER

VM

SQ
L SERVER A

LW
AYS O

N
AVA

ILA
BILITY G

RO
U

P

JU
M

PBO
X

G
ATEW

AY SU
BN

ET
ACTIVE D

IRECTO
RY

VPN
 G

atew
ay

VM

JU
M

PBO
X

G
ATEW

AY SU
BN

ET
ACTIVE D

IRECTO
RY

VPN
 G

atew
ay

VMVMVM

W
EB TIER

VMVMVM

BU
SIN

ESS TIER

VM

SQ
L SERVER A

LW
AYS O

N
AVA

ILA
BILITY G

RO
U

P

VMVMVM

W
EB TIER

VMVMVM

Recom
m

endations
• Each Azure region is paired w

ith another region w
ithin the sam

e geography. In general, choose regions from
 the sam

e regional pair. If there is a broad outage, recovery of at least one region out of every
pair is prioritized.
 • Configure Traffic M

anager to use priority routing, w
hich routes all requests to the prim

ary region. If the prim
ary region becom

es unreachable, Traffic M
anager autom

atically fails over to the secondary
region.
 • If Traffic M

anager fails over, w
e recom

m
end perform

ing a m
anual failback rather than im

plem
enting an autom

atic failback. Verify that all application subsystem
s are healthy before failing back.

• Traffic M
anager uses an H

TTP (or H
TTPS) probe to m

onitor the availability of each region. Create a health probe endpoint that reports the overall health of the application.

• Traffic M
anager is a possible failure point in the system

. Review
 the Traffic M

anager SLA, and determ
ine w

hether using Traffic M
anager alone m

eets your business requirem
ents for high availability. If not,

consider adding another traffic m
anagem

ent solution as a failback.

• Create a SQ
L Server Alw

ays O
n Availability Group that includes the SQ

L Server instances in both the prim
ary and secondary regions. Configure the replicas in the secondary region to use asynchronous

com
m

it, for perform
ance reasons.

• If all of the SQ
L Server database replicas in the prim

ary region fail, you can m
anually fail over the availability group. W

ith forced failover, there is a risk of data loss. O
nce the prim

ary region is back online,
take a snapshot of the database and use tablediff to find the differences.

• W
hen you update your deploym

ent, update one region at a tim
e to reduce the chance of a global failure from

 an incorrect configuration or an error in the application.

• Test the resiliency of the system
 to failures. M

easure the recovery tim
es and verify they m

eet your business requirem
ents.

A
zure

